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ABSTRACT

WEAK LENSING AND COSMOLOGY IN THE DARK ENERGY SURVEY

Lucas Frozza Secco

Bhuvnesh Jain

In this PhD Thesis, we present studies which aim at understanding and test-
ing the fundamental assumptions of the ⇤CDM cosmological model. We initially
show that weak gravitational lensing can be derived as a consequence of General
Relativity, and that it can be applied to astronomical data from the Dark Energy
Survey (DES) in order to constrain the amplitude of matter fluctuations in the
universe. This constraint can be used as an end-to-end cosmological test when it is
compared to inferences from the Cosmic Microwave Background. We further extend
the cosmological model to account for non-standard parameters which can point to
novel physics, and use DES data to assess their statistical significance. We finally
show that the Cold Dark Matter (CDM) paradigm can also be fundamentally tested
with observational data using morphological signatures of disk galaxies in cluster
environments if CDM is self-interacting.
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Chapter 1

Introduction

1.1 Observational Cosmology

Over the past few decades, cosmology has seen the variety and the size of available

data sets increase enormously. In particular, wide-field imaging astronomical sur-

veys, those which collect images of the sky in relatively broad bands around the

optical spectrum of light, have benefited from a massive increase in data quality

and quantity. As a direct example, 20 years ago, around 100 thousand galaxies

over an area just under 1deg2 were utilized for a first measurement of weak lensing

correlations with high statistical significance [109], while present-day Dark Energy

Survey Year-1 and Year-3 data sets contain around 30 and over 100 million galaxies

over 1,500deg2 and 4,500deg2, respectively. This means that 2 decades after a first

detection of cosmic shear, the main subject of this work, survey data sizes have
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increased by 3 orders of magnitude. Furthermore, the operations of the Vera Rubin

Observatory1, scheduled to start full science operations in less than 3 years, will

collect over 20 Terabytes of data per night and create, over a decade, catalogs of

around 20 billion galaxies over an area of 18,000deg2.

The many consequences of such an increase in the amounts of data and the

associated, massive increase in signal-to-noise will be discussed at length in the

following sections, but at this point these rough numbers hopefully su�ce to show

that cosmology lives a historic era of wealth of data. Physicists and astronomers of a

century ago were presented with General Relativity by Einstein and thus obtained,

for the first time in human history, a mathematical tool to explore the Cosmos.

The physicists and astronomers of this generation are presented with the challenge

of turning cosmology into precision science.

In order to tackle this challenge, we must construct well-defined cosmological

observables. A basic notion in modern cosmology, supported by early observations

of E. Hubble [49], is that the distance between galaxies in the present-day universe

is growing in such a way that, the further a galaxy is from us, the observers, the

larger its receding velocity. A simple backwards extrapolation of this fact leads

to the conclusion that objects in the universe were closer together in the past. A

mathematical understanding of a universe that seems to expand as time passes is

obtained with Einstein’s field equations. With a metric that dictates the local ge-

1https://www.lsst.org/
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ometry of space-time and fulfills some desired symmetries (e.g. spatial homogeneity

and isotropy) and an assumption of a universe that is filled with i components whose

densities are given by ⇢i, we obtain the Friedman equation

H
2(t) ⌘

✓
ȧ(t)

a(t)

◆2

=
8⇡G

3

X

i

⇢i (1.1.1)

where a(t) is the scale factor that measures the size of the universe as a func-

tion of time and G is Newton’s constant. If we define a critical density ⇢crit(t) =

3H2(t)/8⇡G and normalize individual components by that value at the present-day

time t = t0 such that ⌦i(t) ⌘ ⇢i(t)/⇢crit(t = t0), we can rewrite eq. (1.1.1) as

H
2(t) = H

2
0

X

i

⌦i(t) (1.1.2)

where we have also defined H
2
0 = 8⇡G⇢crit(t0)/3. Conservation of energy in Ein-

stein’s equations also tells us that the density of a certain component ⇢i is related

to the scale factor a:

⇢̇

⇢
= �3(1 + !)

ȧ

a
(1.1.3)

where we have introduced the important equation of state parameter ! which relates

the pressure p of a particular type of component in the universe to its energy density:

p = !⇢. (1.1.4)

Radiation, matter (dust) and the vacuum have di↵erent equation of state pa-

rameters which relate to their degrees of freedom. In particular, we have ! = 1
3 and

0 for radiation and matter, and ! = �1 for the vacuum (a fact we will return to
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later). Using these values to solve eq. (1.1.3) for the densities and plugging their

results back into eq. (1.1.2) with the ⇢crit normalization, we can write the evolution

of the scale factor as encapsulated by H(a) as

H(a) = H0

p
⌦ma

�3 + ⌦ra
�4 + ⌦⇤ (1.1.5)

where ⌦i are present-day normalized densities and the subscripts i=m, r and ⇤ con-

veniently refer to matter, radiation and the vacuum. Equation (1.1.5) also describes

how each energy density decays forward in time (as a function of increasing a), im-

plying that the structure of matter and radiation in the universe becomes sparser

and colder, and eventually becomes dominated by a constant term ⌦⇤. As that

happens, the solution of equation 1.1.5 in terms of the scale factor a dictates that

the expansion of the universe is accelerated and, further into the future, exponential.

In an expanding universe with galaxies receding faster at larger distances from

the observer, radiation wavelengths are redshifted. We can then define the redshift

z of an object, which in practice is the real observable, as

1 + z =
1

a
. (1.1.6)

A final remark is that, also from the Friedman equations, we obtain a distance-

redshift relation given by

�(z) =
1

H0

Z z

0

dz
0

p
⌦m(1 + z0)3 + ⌦r(1 + z0)4 + ⌦⇤

(1.1.7)

where � is a so-called comoving distance which factors out the scale factor a(t).
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The discussion above regards a smooth, unperturbed universe, where matter

and radiation simply follow the background expansion starting from a dense state.

The universe we observe is far too di↵erent from this picture. In reality, we see

matter density perturbation grow and become galaxies and galaxy clusters, and

feedback processes from baryonic physics can significantly heat up these high den-

sity environments even though the background is only getting colder. To describe

the observable universe, we therefore need to study perturbations around the back-

ground.

We start by defining the density contrast of the total matter in the universe as

a function of 3-D position r and time (redshift) z as

�(r, z) =
⇢(r, z)� ⇢̄

⇢̄
(1.1.8)

where ⇢̄ is the matter density averaged over some large enough volume. With this

definition, we can suitably generalize the Poisson equation in terms of the density

contrast and in an expanding background as

r
2
�(r, z) =

4⇡G

c2
⇢̄(z)a2(z)�(r, z) (1.1.9)

An important aspect of this work (and of observational cosmology in general) is

that we are not concerned with predicting �(r) at some specific position r. Instead,

we will seek to treat the density field as a realization of some stochastic initial

conditions and make predictions for the statistical moments of this field and their

evolution in time.
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From the definition (1.1.8), we see that the first moment (the mean) of the

density contrast is null:

h�(r)i = 0. (1.1.10)

The lowest order we care about is, thus, the second moment of the density field

(also known as a 2-point correlation). It is convenient, however, to express that

in terms of the Fourier transform of the field, in which case the 2pt correlation is

called the 3-D matter power spectrum P (k, z):

h�(k, z)�⇤(k0
, z)i = (2⇡)3�D(k � k0)P (k, z) (1.1.11)

where �D is the 3-D Dirac delta function that ensures that power spectrum depends

only on the magnitude of wavenumbers k (another manifestation of the isotropy

assumption). It will become clear that P (k, z) is one of our main quantities of

interest.

In order to relate the power spectrum defined above to a set of cosmological

parameters such as ⌦m and ⌦⇤ and assumptions on the actual cosmological model,

we need to describe how the perturbations �(k, z) evolve in time. While more

details can be found in e.g. [24], the basic argument is that a continuity equation

for matter, interpreted as a fluid, can be written in the expanding background

dictated by the Friedman equations and then decomposed into a stochastic initial

condition �(k), a transfer function T (k) that determines which wavenumbers get to

evolve given the causal horizon of the universe and a function G(z) that determines
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their amplitude growth with time such that

�(k, z) / �(k)T (k)G(z). (1.1.12)

The power spectrum of the quantity above can then be (schematically) written

as

P (k, z) / Ask
ns�1

T
2(k)G2(z), (1.1.13)

where As and ns are the primordial amplitude of matter fluctuations and the so-

called spectral index of the primordial matter power spectrum, respectively. Along

with ⌦m and ⌦⇤, these two new numbers also define a cosmological model.

Di↵erent astrophysical probes such as the clustering of galaxies or the weak

gravitational lensing patterns on the sky can o↵er information about the power

spectrum in di↵erent length-scale regimes and cosmic times. Instead of trying to

constrain the entire shape of the P (k, z) function, however, it is practical to define

a new parameter which, much like As, characterizes the amplitude of the power

spectrum. This parameter is defined as the 3-D power spectrum amplitude filtered

within a window function of some radius. The form of the filter and the relevant

radius are arbitrary, but conventionally it has been widely adopted to be a (real-

space) top-hat function with a radius of 8 Mpch�1. We thus define the so-called

�8:

�
2
8 ⌘

Z
d
3
k

(2⇡)3
|W8(k)|

2
Plin(k), (1.1.14)

where W8(k) is the Fourier transform of the top-hat filter and we use the linear

7



power spectrum. Notice that, under this definition, �8 is simply the variance of the

density field �(r) within the sphere of radius 8 Mpch�1.

We thus arrive at a particularly important issue in modern cosmology. Cos-

mological parameters can be measured at di↵erent cosmic times depending on the

astrophysical probe under consideration. In particular, we can make a distinction

between the amplitude parameter As, related to the primordial amplitude of fluctu-

ations at early cosmic times (high redshift), and the parameter �8, measured most

notably by late-time (low redshift) probes. While a concordance cosmological model

would imply that both measurements agree, that may not be the case with recent

experimental data.

The Cosmic Microwave Background (CMB) inference of �8 comes from its own

measurement of As, ns and other parameters via the statistics of fluctuations on

temperature and polarization, which is then propagated into the power spectrum

P (k) and its amplitude. That measurement is, therefore, coming almost exclusively

from the high-redshift universe2. This propagation, however, assumes a cosmologi-

cal model.

A large number of observational probes have established that the “vanilla” cos-

mological model is one whose gravitational evolution is dictated by General Rela-

tivity (GR) and the components of the universe are dominated by a cosmological

2A caveat about this statement is that the CMB temperature field also experiences lensing by

the large scale structure of the universe, which in turn couples the low-redshift universe to the

high-redshift observables.
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constant which maps into the term ⌦⇤ in eq. (1.1.5) as well as some form of collision-

less (or cold) matter that does not emit radiation, the so-called Cold Dark Matter

(CDM). This model is called ⇤CDM and is at the heart of modern cosmology.

So, in other words, while the CMB measures to great accuracy the cosmological

parameters are early cosmic times and infers �8 at late times given the fiducial

cosmological model assumption, weak gravitational lensing can measure �8 directly

at late times. Comparing the late and early time measurements provides an end-

to-end test of the cosmological paradigm. This is where gravitational lensing (and

other low-redshift probes) become a crucial cosmological observable. If discrepancies

exist between these inferences, then a possible consequence is that new physics is

required in our models.

Interestingly, discrepancies do seem to exist in the measurement of �8 as inferred

from the CMB and the lensing of galaxies [42,43,101]. This so-called “�8 tension”

has been claimed to be between the 2� (95% confidence level) and 3� (99.7% c.l.),

and while these results are recent and still under debate, most of the current discus-

sions are, understandably, around the potential systematic uncertainties that can

bias either the CMB measurements, or lensing, or both.

As far as this work is concerned, this is a brief description of the state of modern

cosmology. We now describe the fundamentals of Weak Lensing (WL) and, still

in this introductory piece, the Dark Energy Survey data utilized to obtain WL

cosmology constraints.
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1.2 Weak Lensing

One of the most striking consequences of General Relativity is that light trajectories

are bent in a gravitational field in such a fashion somewhat similar to classic optics.

From this analogy we draw the name “gravitational lensing”. We will specify later

the “strong” and “weak” lensing regimes, but for now let us show that GR predicts

a deflection angle when photons travel across a gravitational field.

In order to do that, let us define the geodesic equation that dictates the motion

of an object in a covariant form (i.e. a form that is invariant under coordinate

transformations):

d
2
x
↵

d�2
= ��↵

µ⌫

dx
µ

d�

dx
⌫

d�
(1.2.1)

where � is an arbitrary parameter with respect to which the trajectory x
↵ = x

↵(�)

is varied (e.g. time, if we’re dealing with a massive object). The symbol �↵
µ⌫ is

called a “connection”, and Einstein summation is implied. When the right-hand

side of eq. (1.2.1) is null, we of course recover a purely inertial motion, so the term

that goes with �↵
µ⌫ can be thought of as a “force” acting on the object, deflecting

it away from its unperturbed path.

Let us consider the path of light itself, in the absence of a gravitational field.

Without going into much detail, which can be found in [18, 24, 25], consider the

metric tensor for such a spacetime as ⌘µ⌫ . Consider also that the line element in

spacetime is given by

ds
2 = ⌘µ⌫

dx
µ

d�

dx
⌫

d�
. (1.2.2)
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Light is special and we cannot parametrize its trajectory in terms of “proper”

time (the time experienced by the observer in motion), but we can use again some

arbitrary parameter �. Additionally, from Special Relativity, we have ds
2 = 0 for

light rays. The equations of motion for light in a flat spacetime ⌘µ⌫ are, thus:

⌘µ⌫
dx

µ

d�

dx
⌫

d�
= 0;

d
2
x
↵

d�2
= 0. (1.2.3)

By using the definition of the connection:

�↵
µ⌫ =

@x
↵

@��

@
2
�
�

@xµ@x⌫

and some chain rules, one can finally show, using only the Equivalence Principle3

(E.P.) that light trajectories are bent away from their “inertial” path by transform-

ing eqs. (1.2.3) into an arbitrary gravitational field determined by the metric gµ⌫

to obtain:

gµ⌫
dx

µ

d�

dx
⌫

d�
= 0;

d
2
x
↵

d�2
+ �↵

µ⌫

dx
µ

d�

dx
⌫

d�
= 0, (1.2.4)

where we see that a term proportional to �↵
µ⌫ , a “deflecting force” is now acting on

the path of light.

While the E.P. su�ces to show that light is bent by a gravitational field, we

can go further and calculate how much it is deflected by, in terms of an angle. We

start this derivation again with eq. (1.2.1), but now relate the 4-D vector x↵ and

its derivative to the relativistic 4-momentum:

dx
↵

d�
⌘ p

↵ = (E/c, p
i), (1.2.5)

3The E.P. is the requirement that equations of motion must be invariant under a transformation

into an arbitrary gravitational field, i.e. all observers must experience the same physical laws.
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where E is the energy, c is the speed of light and p is the momentum4. Under this

assumption, we have

dx
i

d�
=

dx
i

dt

dt

d�
=

E

c

dx
i

d�
(1.2.6)

and, to first order and considering that the change in energy is small, the geodesic

equation can be written as

E
2

c2

d
2
x
i

dt2
= ��i

µ⌫p
µ
p
⌫
. (1.2.7)

In the Newtonian limit, we can write the metric gµ⌫ by relating it to the classical

gravitational of a point mass:

g00 = c
2

✓
1�

2GM

rc2

◆
(1.2.8)

gij = ��ij

✓
1 +

2GM

rc2

◆
(1.2.9)

where G is Newton’s gravitational constant, M is the dflecting mass, r is the radius

from that mass and �ij is the Kronecker delta. Using eqs. (1.2.8) and (1.2.9) and the

definition of the connection in terms of the metric (commonly known as Christo↵el

symbol), we can write eq. (1.2.7) as

d
2
x
i

dt2
= �

2GMx
i

r3
. (1.2.10)

Equation (1.2.10) can be solved with the geometry of the problem specified in figure

1.1 to yield a deflection angle of

�✓ =
4GM

c2b
, (1.2.11)

4We shall use the conventional notation that greek indices run over 4 dimensions, and latin

indices run over 3 spatial dimensions.
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Figure 1.1: The geometry of the problem of a light ray propagating from a source

at a distance DS from the right, and being deflected by a point mass M at DL by

an angle �✓. Figure extracted from [25].

where b is the impact parameter of the light ray.

It is fair to pause for a moment and appreciate the fact that equation (1.2.11)

triggered not only the birth of an entire field of astronomy and the creativity of un-

countable scientists over a century, but also massive investments in engineering and

technology over the recent decades to design and create experiments that employ

this knowledge to understand the cosmos. These few pages will not do it justice,

so we kindly ask the reader to lower their standards when approaching the rest of

this text.

In an astronomical setting, the impact parameter b happens at an angle that is

typically small enough, and the deflector (which from now on we are entitled to call

a lens) is usually at such large radial distances DL from the observer that we can
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write b = ✓DL and obtain the Einstein radius for some massive lens M :

✓E ⌘

r
4GM

DLc
2
. (1.2.12)

We can discern between 2 di↵erent lensing regimes using ✓E. When the angular

separation ✓
0 between a source and its deflecting lens is smaller than ✓E (or larger

but still close enough to it), we can observe multiple source images (or source images

that form arcs). This regime is called strong lensing, and while it is somewhat easily

identifiable, it is also statistically rare as the angular separations involved are gen-

erally small and require unlikely near-alignments of massive objects along the line

of sight. The distortions caused on images when ✓
0
� ✓E, however, are extremely

small and typically dominated by many forms of astrophysical and observational

noise, but are at the same time present in a very large number of source images.

This second regime is called weak lensing and is the main subject of the rest of this

work.

The point-mass deflection characterized by eq. (1.2.11) is too simplistic if we

aim to describe weak lensing in the universe, so let us first generalize that concept.

We certainly want to define lensing deflections caused by an arbitrary gravitational

potential along the line of sight of the observer. It is easy to implement this gen-

eralization by going back to the metric components (1.2.8) and (1.2.9) and change

the point-mass potential GM/r by the 3-D gravitational potential ��. Consider

also that, instead of taking derivatives with respect to time t, we di↵erentiate with

respect to the radial distance to towards the source, which is, with the distance-
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redshift relation, a good approximation for cosmic time even though we are neglect-

ing time dilations caused by lensing. In cartesian coordinates where z is the radial

distance and the i = 1, 2 components of xi are coordinates on the plane of the sky,

change derivatives to z/c and we can finally write the geodesic equation (1.2.10) as

d
2
x
i(z)

dz2
= �

2

c2

@�(xi
, z)

@xi
. (1.2.13)

Integrating eq. (1.2.13) and changing the notation from x
i (with i = 1, 2) to

more intuitive 2-D vectors on the plane of the sky that match the geometry on

Figure 1.1, we obtain the lens equation

~� = ~✓ � ~↵(~✓ ), (1.2.14)

where we define the deflection angle ~↵ as

↵
i(~✓ ) =

1

c2

@�(~✓ )

@✓i
(1.2.15)

in terms of the gravitational potential projected along the line of sight towards the

source physically located at ~�:

�(~✓ ) =
2

DS

Z DS

0

dDL
DSL

DL
�
�
x
i = DL✓

i
, DL

�
, (1.2.16)

whereDSL = DS�DL is the distance between the lens and the source. We can make

a couple of important remarks about the last few equations. One is that there is no

deflection ~↵ if the projected potential is not varying over the plane of the sky. This

means that a uniform massive sheet would not cause a lensing deflection. Another

remark is that the factor DSL/DL tells us that if the lensing structure at a distance
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DL is too close to the source at DS, the lensing signal vanishes. Similarly, if the

source is too close to the observer and DS ! 0, the projected potential is also

negligible and there is also no lensing signal. We can also show by going back to

figure 1.1 that

~✓DS = ~�DS + �~✓DSL,

and using the lens equation we just derived to get

~✓DS = ~�DS + ~↵DS

we end up with the useful identity

~↵ =
DSL

DS
�~✓. (1.2.17)

So far we have succeeded in showing how gravitational lensing displaces the

observed image of a small source given an arbitrary 3-D gravitational potential

�(xi
, z) and its 2-D counterpart projected on the plane of the sky �(~✓ ), often called

the “lensing potential”. We now increase the level of complexity by another step,

and consider an extended source image. We are approaching the observational

case of realistic astronomical sources such as extended galaxies on the sky. As we

start delving into real astronomy, we must learn the astronomical jargon and the

completely arbitrary definitions and nomenclature that come with it.

We first define the luminosity of an object as the total energy emitted by that

object per unit time (it can also be given in terms of the astronomical magnitude

system by the “absolute bolometric magnitude”). The luminosity is generally not
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an observable quantity, so we also need to define the apparent brightness (or simply

brightness) of an object as the amount of energy per unit time that reaches some

detecting area (such as the observer’s retina, a telescope CCD, etc). Brightness,

thus, certainly depends on the distance between the object and the observer, and

in general also depends on whether or not any absorption of light occurs between

the emitter and the observer.

Since the flux (energy per time per area) of an extended object decreases with

the square of its distance from the observer, but at the same time the physical

area encompassed by some fixed angle increases with the square of the distance, we

can also define a quantity that is invariant of distance: the surface brightness of

an object. The energy per time received from a given source is then equal to the

surface brightness of that source multiplied by its angular size.

What matters most for us is that lensing preserves the surface brightness, i.e. it

does not magically increase the energy of emitted photons, but it does change the

observed flux of an object because it allows the observer to collect photons from a

larger sky area. This is easier to see by referring back to figure 1.1: in the presence

of a lens, the observer of the lensed image sees the angular area d
2
✓ encompassed

by a radius ~✓. If no deflection occured, the observer would see a smaller angular

area d
2
� of radius ~�. The statement that the surface brightness S is unchanged

is S
un-lensed(~� ) = S

lensed(~✓ ) and the ratio of lensed to un-lensed flux is called the
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magnification µ defined as

µ =
S

lensed
d
2
✓

Sun-lensedd2�
=

d
2
✓

d2�
. (1.2.18)

Using the lens equation (1.2.14), this Jacobian can be written as a 2⇥ 2 matrix:

@�i

@✓j
=

0

BB@
1� @↵x

@✓x
�

@↵x
@✓y

�
@↵y

@✓x
1� @↵y

@✓y

1

CCA = I � ij, (1.2.19)

where I is the identity matrix and  ij is the “distortion tensor” defined right below.

Since we already know how to relate the deflection angle ↵ to the lensing potential

� through equation (1.2.15), we can tell that the o↵-diagonal terms have to be the

same5. So the distortion tensor  ij, which ultimately dictates how the lensed area

gets transformed, needs 3 degrees of freedom. To take advantage of the trace of

that tensor as one of the degrees of freedom, we can write it using equation (1.2.15):

 ij =

0

BB@
+ �1 �2

�2 � �1

1

CCA (1.2.20)

with , �1 and �2 defined as

 ⌘
1

2c2

✓
@
2�

@✓2x

+
@
2�

@✓2y

◆
=

1

2c2
r

2�, (1.2.21)

�1 ⌘
1

2c2

✓
@
2�

@✓2x

�
@
2�

@✓2y

◆
, (1.2.22)

�2 =
1

c2

@
2�

@✓x@✓y
. (1.2.23)

5Since the potential has the symmetry @x@y� = @y@x�
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To understand how the distortion tensor transforms the shapes of extended

objects, consider setting �1 = �2 = 0 and solving the equation that defines the

Jacobian (1.2.19). In that case, we get

d�1

d✓1
= 1� ;

d�2

d✓2
= 1� ,

which can be solved and Taylor expanded for  ⌧ 1 to yield ~✓ = (1+)~�. Assuming

the true source is a circle of radius �, this means the observed image at ~✓ is also

a circle enlarged by a factor (1 + ). Applying the same reasoning while setting

 = �2 = 0, we get

d�1

d✓1
= 1� �1;

d�2

d✓2
= 1 + �1,

which can be solved to yield (1 � �1)2✓21 + (1 + �1)2✓22 = �
2, which describes an

ellipse. A similar thing happens for nonzero �2.

We thus reach an important conclusion: the independent modes by which lensing

distorts an extended object is by uniformly dilating or shrinking it ( > 0 and  < 0

respectively), or also by imparting a shear on images (through �1,2) which e↵ectively

makes them more elliptical. These e↵ects are summarized in figure 1.2.

We are close to connecting the shapes of observed objects to the gravitationally

induced shear they pick up from the intervening matter. Observed shapes are nor-

mally characterized in terms of ellipticities. We can show below how shears (�1, �2)

relate to a certain definition of ellipticities (e1, e2). For a more complete treatment

of this relation, and in particular how to make sure ellipticities are actually unbiased

estimators of the shears, see [8].
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Figure 1.2: The 3 di↵erent degrees of freedom captured by the distortion tensor
 ij. While  shrinks/enlarges a circular image, �1,2 shear the image making it more
elliptical. (Copyright: TallJimbo - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=4179196.

Modified for this work.)

Let us quantify the ellipticity in terms of the moments of the surface brightness

as

qij =

Z
d
2
✓ S

observed(~✓ )✓i✓j, (1.2.24)

and, based on these moments, let us define the ellipticity components in an analogy

to how one would quantify the axis ratios of an ellipse, which is bound between the

values (0,1) as

e1 ⌘
q11 � q22

q11 + q22
; e2 ⌘

2q12
q11 + q22

. (1.2.25)

Using the Jacobian (1.2.19) and converting from the image plane at ✓i to the source
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plane at �i, we can write the ellipticities to first order in the shear as6

ei ⇡
2�i
1� 

. (1.2.26)

For the most part in the weak lensing regime, we will be dealing with galaxies that

live in lines of sight that are not too dramatically impacted by foreground structure.

This means that, for a large fraction of galaxies in a weak lensing sample, we can

assume  ⌧ 1 and disregard the denominator of (1.2.26). This approximation is

a fairly good one and is often called the “reduced shear” approximation. Under

this approximation, lensing e↵ects are reduced to 2 degrees of freedom, namely the

shears.

A more recent treatment of the connection between the observed shapes and the

theoretic shears follows [91]. Instead of the approximations that led to eq. (1.2.26),

consider a measurement of 2-D galaxy shapes ei as a Taylor expansion around zero

gravitational lensing:

ei = ei|�=0 +
@ei

@�j

����
�=0

�j + ... (1.2.27)

where � = 0 represents the absence of lensing. For 2-D shapes and shears, Rij ⌘

@ei/@�j is a 2⇥2 matrix called shear response, and encapsulates, to first order, how

the ellipticity estimator ei changes under a small shear �j:

Rij =

0

BB@
@e1/@�1 @e2/@�1

@e1/@�2 @e2/@�2.

1

CCA (1.2.28)

6The factor of 2 is a convention here that can be eliminated with a di↵erent definition of eqs.

(1.2.25).
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With this in mind, the ellipticity becomes estimator of shear if we assume that,

over large enough ensembles and in the absence of systematic uncertainties the

orientation of unlensed galaxies is random such that heii�=0 = 0:

heii ⇡ hRij�ji . (1.2.29)

The average here is actually taken on each entry of the matrix Rij. We can approx-

imately invert this relation by measuring ei the response matrix Rij for each galaxy

in the sample:

h�ii ⇡ hRiji
�1

hRij�ji . (1.2.30)

While some of these matrix operations are poorly defined, we have found in [113]

that the mean response matrix is roughly diagonal, and eq. (1.2.30) can in fact be

applied to each component i = (1, 2) separately.

Some of the derivations above start to show how tough weak lensing can be in

terms of statistics and required data. Current galaxy surveys such as the DES have

reached of order 100 million observed galaxies, so these operations above need to be

applied to each of them, turning this problem into a computational challenge. As

we will see later, the actual magnitude of �i in the weak lensing regime is or order

0.01 or less, while intrinsic noise is usually around 40⇥ larger at 0.40 (recall that

our ellipticity and shear definitions are bound between the values of [0,1]).

We can now relate the measured galaxy shapes e1,2 to an estimator of the gravi-

tational shears �1,2, which brings us closer to the goal of connecting lensing observ-

ables to theory. In order to do that, let us recast some of our definitions in 2-D
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Fourier space7. Equations (1.2.21)-(1.2.23) translate nicely into harmonic space:

(~̀) = �
`
2

2c2
�(~̀) (1.2.31)

�1(~̀) =
�`

2
x + `

2
y

2c2
�(~̀) (1.2.32)

�2(~̀) =
�`x`y

c2
�(~̀) (1.2.33)

.

We can choose to define, without loss of generality, the vector ~̀with a magnitude

` and an angle �` with respect to a fixed x-axis, such that the x component is

`x = ` cos�` and rewrite the shears above as

�1(~̀) = �
`
2

2c2
�(~̀) cos(2�`); �2(~̀) = �

`
2

2c2
�(~̀) sin(2�`). (1.2.34)

A final definition we can make is to take linear combinations of �1 and �2 as our

modeled signal. Let us define two orthogonal E and B modes as:

E(~̀) ⌘ ��1(~̀) cos(2�`)� �2(~̀) sin(2�`) = �
`
2�(~̀)

2c2
, (1.2.35)

B(~̀) ⌘ �1(~̀) sin(2�`)� �2(~̀) cos(2�`) = 0. (1.2.36)

Two important things must be noted about our choice of linear combinations

of �1,2 that make up the E/B modes. The first one is that E(~̀) is equal to (~̀),

so the convergence field  contains the E signal of interest. The other important

thing is that we realize the B-mode part of the signal vanishes. This is strictly tied

to all of the assumptions we have made so far (i.e. that gravity is causing all of

7Our convention here will be f(~̀) =
R
d2✓ e�i~̀⇧~✓f(~✓ ) and f(~✓ ) =

R
d2`

(2⇡)2 e
i~̀⇧~✓f(~̀)
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the lensing, that the shears � measured on galaxies are unbiased, etc). Even when

all of these assumptions are true, there is still statistical noise in both the E and

B pieces of the signal, so the results in eqs. (1.2.35) and (1.2.36) are only true on

average. Nevertheless, with eq. (1.2.36) we have made taken an important step

towards finding a set of “null tests” for weak lensing galaxy samples.

Knowing that  contains the most valuable part of the signal, let us combine

eqs. (1.2.21) and (1.2.16) to get

(~✓ ) =
1

c2

Z DS

0

dDL
DSLDL

DS
r

2
�. (1.2.37)

We see that the Laplacian of the 3-D gravitational potential appears in the inte-

grand and we can immediately replace it by the cosmological version of the Poisson

equation (1.1.9):

(~✓ ) =

Z DS

0

dDL W (DS, DL)�(DL
~✓, DL) (1.2.38)

where we have defined a certain window function W given by

W (DS, DL) =
DSLDL

DS

4⇡G

c2
⇢̄(a)a2(DL). (1.2.39)

We can polish the notation of both of these last equations by, firstly, using

instead of DL and DS the angular diameter distances DA(z) to the lenses and to

the sources, respectively. This quantity relates to the comoving distance (1.1.7) via

DA = �(z)/(1 + z) such that, eg. DL = DA(zL) = �(zL)/(1 + zL). Secondly, it

was through the deflection of sources at a single redshift “slice” that we arrived

at the geometric factor DSLDL/DS. In reality, the source galaxies spread over a
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wide range in redshift (radial distance) and their distribution is characterized by a

galaxy number density n(z). Also, since eq. (1.2.39) depends on ⇢̄, we can replace

it by ⌦m using eq. (1.1.2). With these modifications, we end up with the so-called

lensing e�ciency kernel

W (�) =
3H2

0⌦m

2c2
�

a(�)

Z 1

0

dz
dn(z)

dz

�(z)� �

�(z)
(1.2.40)

and the notation of eq. (1.2.38) is also simplified to

(~✓ ) =

Z
d�W (�)�(�~✓,�). (1.2.41)

We can finally go back to the point made earlier, which led to eq. (1.1.11),

that cosmological observables tend to be statistical. Again, we are interested in

predictions that relate to the matter power spectrum P (k, z) and the cosmological

parameters that define it. Equation (1.2.41) gives us a direct way to do that: we

just need to look at the 2nd moment of the convergence. The 2-D analogous of eq.

(1.1.11) using the Fourier transform of (1.2.41) is then

D
(~̀)(~̀0 )

E
= (2⇡)2�D(~̀� ~̀0)C(`) (1.2.42)

where C(`) is the (2-D harmonic space) power spectrum of the convergence. Iden-

tifying the power specturm wavelength k with `/� and using eqs. (1.2.41), (1.2.42)

and (1.1.11), we can finally write the convergence power spectrum in terms of the

matter power spectrum8:

C(`) =

Z
d�

W (�)2

�2
P

✓
`

�
;�

◆
. (1.2.43)

8The so-called Limber approximation is needed here: the integral is formally over along the
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We will refer to this as the cosmic shear power spectrum. It carries very interesting

information: the lensing signal is a projection of the power spectrum, weighted

by some lensing e�ciency kernel that is determined by the distribution of source

galaxies n(z). As we will show later, this lensing kernel is relatively broad given

our present-day uncertainties on n(z) and the mixes information from di↵erent

wavelengths k of the power spectrum. Nevertheless, for a survey like the DES, this

kernel peaks at fairly low redshifts (around z = 0.5), which means the lensing signal

is mostly a↵ected by structure around those cosmic times. If the observed source

galaxies reach higher redshifts, so does the kernel and consequently the lensing

signal probes earlier cosmic times.

A final addition to this theoretical modeling of cosmic shear is that we will

compute 2-point correlations by splitting the redshift distribution into a few wide

slices. The reasoning is that, since sources at di↵erent redshifts probe di↵erent

cosmic times, cross-correlations between di↵erent redshift bins contain geometrical

information on distances. An example of redshift binning is shown in Figure 1.3,

extracted from the DES Y1 cosmic shear results. We thus generalize the shear

power spectrum (1.2.43) as

C
ij
(`) =

Z
d�

W
i(�)W j(�)

�2
P

✓
`

�
;�

◆
, (1.2.44)

radial direction of 2 lines of sight, but we assume that modes that are transverse to these lines

of sight are more important than those in the radial direction, so our result is simplified. This

is a very good approximation for the shear power spectrum, missing only a couple percent of the

signal at very large angular scales that are essentially not used in our analysis.
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Figure 1.3: The redshift distribution of source galaxies n(z) in DES Y1, split into 4

di↵erent bins. Top and bottom panels show di↵erent calibration methods, and wide

bands show the nominal edges of each redshift bin with its specific distribution of

galaxies, ni(z). Extracted from [101].

where each kernel W i(�) is computed with eq. (1.2.40) from the distribution of

galaxies inside a specific redshift bin, ni(z) .

To finalize this section, we note that, up to this point, we have been describing

the pristine cosmic shear signal in the absence of any real-data complications. These

complications are of statistical, systematic and computational origin. As is similar

to any experimental endeavor, the vast majority of the time spent by researchers
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revolves around addressing the systematic and statistical uncertainties of the data

in computationally feasible ways. The remaining of this dissertation focuses on

those aspects of cosmic shear.

1.3 The Dark Energy Survey Data

Here we describe the data collected and utilized by the Dark Energy Survey, and

summarize the procedure for creating the shape catalogs from which we measure

cosmic shear correlation functions9.

The Dark Energy Survey (DES) is a five and a half year observing program

using the 570 megapixel DECam [32] on the Blanco telescope at the Cerro Tololo

Inter-American Observatory (CTIO). The nominal DES wide-field survey images

5,000deg2 of the southern sky to 24th i-band limiting magnitude in the grizY

bands spanning 0.40-1.06 µm. The survey tiling strategy ultimately consists of ten

overlapping 90 second exposures in each of griz and 45s exposures in Y over the

full wide-field area.

The DES Year 1 (Y1) shape catalogs used in this work are based on observations

taken between Aug. 31, 2013 and Feb. 9, 2014 during the first full season of

DES operations. DES Y1 wide-field observations were targeted to a large region

overlapping the South Pole Telescope (SPT) survey footprint extending between

approximately 60deg < � <40deg, and a much smaller area overlapping the “Stripe

9Originally presented in [101], to which LFS contributed in the writing and analysis.
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82” region of the Sloan Digital Sky Survey (SDSS), which is not included in this

analysis.

The observed area was limited in the DES Y1 period to reach a su�cient number

of overlapping exposures across the observed footprint. In practice, this resulted in

a total area of about 1,514deg2 with a mean depth of three exposures, after masking

potentially bad regions not used for weak lensing [27].

The DES Year 3 (Y3) data, conversely, reached the full footprint of the survey

taking data between the years of 2014 and 2015, but at a somewhat shallower

depth (on average 5 exposures) than the expected full data, with over 400 million

objects before the masking of galaxies not utilized in the WL shape catalogs. After

preliminary maskings of bad regions, the DES Y3 survey area is of around 4,200deg2.

As we shall note later, the increase in statistical power from DES Y1 to Y3 in the

WL signal thus comes mostly from this almost three-fold increase in survey area.

The final shape catalog production and validation in DES Y3 is still ongoing and

publications are in preparation. The footprint of DES Y1 (green) and Y3 (blue)

are shown in Fig. 1.4.

The DES Y1 data incorporated a variety of improvements over the DES Science

Verification (SV) data used in preliminary DES weak lensing analyses, including

updates to the telescope and systems components and to data processing. These

are discussed in detail in [27], which describes the production and validation of

a ‘Gold’ catalog of 137 million objects prior to the ‘bad region’ masking referred
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Figure 1.4: The footprint of DES Y1 (in green) and DES Y3, which cover roughly

1,400 deg2 and 4,200 deg2 square degrees of the southern sky.

to above, and in [113], where the Metacalibration shape catalog production and

validation is described.

Metacalibration is a method to calibrate a shear statistic, such as a mean shear

estimate or shear two-point function, from available imaging data, without requiring

significant prior information about galaxy properties or calibration from image sim-

ulations [50,91]. Meetacalibration has been tested with complex image simulations

and shown to be accurate at the part per thousand level [91]. The implementation

used in DES Y1 is described in detail in [113], where the ellipticity is measured

using a single Gaussian model that is fit to the galaxy image in the riz bands.

The galaxy image is then artificially sheared and the ellipticity remeasured to con-
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struct the shear response matrix via numerical derivatives of the ellipticity. We do

this by deconvolving the Point-Spread Function (PSF), applying a shear, and then

reconvolving by a symmetrized version of the PSF.

This results in one unsheared and four sheared versions of the shape catalog

(one for each direction (±) and component of shear), all of which include flux

measurements for photo-z estimation. Some limitations in the application of Meta-

calibration to DES Y1 data are discussed in [113], which leads us to assign a

non-zero mean for the Gaussian prior assumed in this analysis on the shear calibra-

tion of m = 0.012 ± 0.013. This error budget is dominated by our estimate of the

unaccounted e↵ects of contaminating light from neighboring objects on the shear

estimation.

With Metacalibration, corrections are calculated for both the response of the

shape estimator to a shear and the response of object selections to a shear. The

Metacalibration procedure produces a noisy estimate of the shear response R� for

each galaxy, which is then averaged to produce hR�i. The induced selection bias is

calculated only in the mean hRSi. These quantities are in general 2x2 matrices of the

ellipticity components. The explicit calculation of these corrections using the four

sheared catalogs is described in Secs. 4.1 & 7.4 of [113]. The application of these

corrections depends on the details of the shear statistic that is being calibrated.

In this work we adopt a number of approximations that simplify this process.

First, we assume that the shear response is independent of environment, and thus
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not dependent on the separation of galaxies. Under this assumption, the correc-

tion to the shear two-point function is simply the square of the mean response (see

section 3.2 in [91]). We further make the assumption that the correction is inde-

pendent of the relative orientation of galaxies, so that the mean response can be

calculated without the shape rotations that are applied when measuring the shear

two-point function. We find that the mean response matrices are consistent with

being diagonal, which further simplifies the calibration procedure. While these as-

sumptions appear to be valid for the DES Y1 analysis, fully testing the propagation

of the full rotated selection response through the shear two-point function is carried

out for DES Y3, wherein we find no significant change with respect to the DES

Y1 procedure. Furthermore, there should be no additive correction of the response

necessary for Metacalibration, due to the symmetric reconvolution function used

during the metacalibration process.
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Chapter 2

Weak Lensing Constraints from

DES-Y1 Data

2.1 A Model for the Signal

In order to derive cosmology constraints from cosmic shear data, we need two things:

a predictive physical model, which we can reasonably assume to underlie the data,

and a reliable implementation of that model. This statement implies a number

of requirements; first, on the scales fit any systematic deviations from, or e↵ects

omitted from, the model must be comfortably subdominant to uncertainties on

the data. If this is not the case, our model may compensate for the additional

features in the data, resulting in biases. Second, the implementation must be free

of bugs and numerically stable at all points within the prior volume. Although
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apparently trivial, the testing and code comparison required to produce such as

code is a sizeable task (see [59]). Finally, the model must be evaluated quickly

at any given point in parameter space. This point is particularly important, given

that our cosmological model posterior has ⇠ 15 parameters that will be described

later, and typically requires O(106) or more realizations.

For all parameter inference presented in this work, we use the approach of

Bayesian statistics and assume the Likelihood function to be a multivariate Gaus-

sian:

lnL(⇥) = �
1

2

X

i,j

⇣
Di � D̃i(⇥)

⌘
C

�1
ij

⇣
Dj � D̃j(⇥)

⌘
(2.1.1)

where ⇥ is the full parameter vector with a particular set of values, Di is the ith

element of the tomographic data vector of length ND = N✓Nz(Nz + 1), and D̃i(⇥)

is the corresponding theory prediction. The covariance matrix C is a ND ⇥ ND

block. In principle C is a function of ⇥, but we follow all previous cosmic shear

analyses in the literature in using a fixed covariance matrix, e.g. [59, 101]. The

Posterior distribution on parameters is evaluated as the product of L(⇥) and the

prior P(⇥), and sampling is carried out within the CosmoSIS 1 [112] framework,

using the Multinest [30], emcee [33] and Polychord [39] samplers.

Cosmic shear is a quantity with two components, based on two 2nd order angular

derivatives of the lensing potential, � as given by �1 and �2. For points along the

1 axis, these components give a simple definition of the tangential and cross-shear

1https://bitbucket.org/joezuntz/cosmosis
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components: �t = ��1 , �⇥ = �2. There are thus three 2-point functions to

consider for the E-mode in eq. (1.2.35). However, the expectation value of the

cross correlation h�t�⇥i changes sign under a parity transformation, so in order to

conserve parity this contribution must vanish, and this measurement contains no

cosmological information. We are then left with 2 correlation functions of interest,

which can be constructed from linear combinations of �t,⇥ [85]:

⇠±(✓) = h�t�ti± h�⇥�⇥i . (2.1.2)

Notice that this definition represents the correlation functions in real space. So far,

our definitions have been restricted to Fourier space and boil down to eq. (1.2.44).

We thus need to transform from C(`) into eq. (2.1.2), which can be done through

a Bessel transform assuming te sky is approximately flat for the angular separations

of interest (which normally range from 2.5 to 250 arcminutes). We then get

⇠
ij
+/� =

Z
`d`

2⇡
J0/4(`✓)C

ij
(`), (2.1.3)

where J0/4(x) are the 0th/4th order Bessel functions of the first kind.

It is understandable that 2 functions are necessary to characterize the 2pt comsic

shear signal if we connect it to a spin-2 field that can be expressed in terms of a

real and an imaginary component,

� = �t + i�⇥,

which is equivalent to an amplitude and a rotation angle. We could then re-write

eq. (2.1.2) as ⇠+ ⌘ h��
⇤
i and ⇠� ⌘ h��i. As defined, ⇠± are often called “natural
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components” of the shear field [86], since the linear combination we’ve chosen is

such that ⇠+ is invariant under a change in coordinate system.

In practice we do not have direct access to the shear field, but rather estimate

it via per-galaxy ellipticities (but see [7] for an alternative approach). Correlating

galaxies in a pair of redshift bins i, j we define,

⇠
ij
±(✓) =

P
ab
w

a
w

b
�
ê
i
t,a ê

j
t,b ± ê

i
⇥,a ê

j
⇥,b

�

P
ab
wawbRaRb,

(2.1.4)

where the sums run over pairs of galaxies (a, b), drawn from redshift bins (i, j), for

which the angular separation falls within the range |✓ ��✓| and |✓ +�✓|.

Equation 2.1.4 should be thought of as the observational version of our theory

calculation that reached eq. (2.1.2). Both ⇠+ and ⇠� are measured in four tomo-

graphic bins for DES Y1, and using twenty log-spaced ✓ bins between 2.5 and 250

arcminutes.

While expression (2.1.4) is general, we set all weights to unity and e↵ectively

weight galaxies only through the response matrix R defined in (1.2.30). The re-

sponse factors are obtained from Metacalibration (see Section ) and account for

shear and selection biases R↵ = R�,↵ + RS,↵. Each component of the response is

averaged, such that R = (R11 + R22)/2. It is also worth bearing in mind here that

although the responses are computed on a per-galaxy basis, they are noisy, and so

only meaningful on the level of the statistical ensemble within each redshift bin. In

DES Y1 [101], the shape components that enter eq. (2.1.4) are not raw ellipticities,

but are first corrected for residual mean shear, such that êik ⌘ e
i
k � hekii. Here the
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lower index k is an ellipticity component k 2 (1, 2), and the angle brackets denote

averaging galaxies within redshift bin i.

We show the resulting two point functions as measured in the DES Y1 data in

Figure 2.1, extracted from [101], alongside a best fitting theory predictions. Each

panel shows a redshift bin pair, and in each one the shaded region shows scales

removed by the cuts discussed in the next section. These measurements are made

using the software TreeCorr2 [51].

2.2 Systematic Uncertainties

We now turn our attention to the many astrophysical e↵ects that can be present

in the signal shown in Figure 2.1. Any such e↵ects that are not included in the

model have the potential to bias the model parameters when we estimate their

posterior distributions. This is an area of great interest and the core of many

present-day weak lensing analyses. While we cannot o↵er a comprehensive view of

this quickly evolving field of research, we approach some of the main systematics

that are mitigated in the DES Y1 (and also Y3) analysis.

2.2.1 Intrinsic Alignments

Galaxies are not idealised tracers of the underlying matter field, but rather astro-

physical bodies, which are subject to local interactions. To account for this added

2https://github.com/rmjarvis/TreeCorr
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Figure 2.1: The measurement of ⇠±(✓) from the DES Y1 data. Solid lines correspond

to the best-fitting cosmological and nuisance parameter values as inferred from

their posterior distributions. Each panel corresponds to a di↵erent combination

of redshift bins, and grey bands correspond to angular scales eliminated from the

analysis (see section 2.2).
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complexity, the observed shape of a galaxy can be decomposed into two parts, the

shear induced by gravitational lensing (G) and the intrinsic shape (I) induced by

the local environment: � = �
G+�

I. In this section, we consider only the correlated

intrinsic component rather than the intrinsic “shape noise”, which contributes to

the covariance but not the signal.

The term intrinsic alignments (IAs) covers two contributions from environmen-

tal interactions: (a) intrinsic shape - intrinsic shape correlations between physically

nearby galaxies, and (b) shear-intrinsic correlations between galaxies on neighbour-

ing lines of sight. Known as II and GI contributions, respectively, and contributing

on similar scales to the cosmological lensing signal, these terms constitute a signifi-

cant systematic in weak lensing analyses. Including IA contributions, the observed

E-mode angular power spectrum is written

C
ij
EE(`) = C

ij
GG(`) + C

ij
GI(`) + C

ij
IG(`) + C

ij
II,EE(`). (2.2.1)

Nonlinear models of IA, as discussed below, can also produce a non-zero B-mode

power spectrum:

C
ij
BB(`) = C

ij
II,BB(`). (2.2.2)

Assuming the Limber approximation as before, the two IA C(`)s are given by:

C
ij
GI(`) =

Z �H

0

d�
W

i(�)nj(�)

�2
PGI

✓
`

�
, z(�)

◆
, (2.2.3)

and

C
ij
II(`) =

Z �H

0

d�
n
i(�)nj(�)

�2
PII

✓
`

�
, z(�)

◆
, (2.2.4)
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These expressions are generic, and are valid regardless of which model is used to

predict PGI and PII .

It is typically assumed that the correlated component of galaxy shapes is deter-

mined by the large-scale cosmological tidal field. The simplest relationship, which

should dominate on large scales and for central galaxies, involves the “tidal align-

ment” of galaxy shapes, producing a linear dependence [20, 46]. In this case, one

can relate the intrinsic shape component the gravitational potential at the time of

formation:

(�I
1, �

I
2) = C1(z)

✓
@
2

@x2
�

@
2

@y2
, 2

@
2

@x@y

◆
�⇤, (2.2.5)

where the proportionality factor C1(z) captures the response of intrinsic shape to

the tidal field and is discussed below. More complex alignment processes, including

“tidal torquing”, relevant for determining the angular momentum of spiral galaxies,

are captured in a nonlinear perturbative framework, which we refer to as “TATT”

(Tidal Alignment and Tidal Torquing; [15]). Although the terms in the model

can be associated with physical mechanisms, they can also be viewed as e↵ective

contributions to intrinsic shape correlations from small-scale physics. See also [84,

102, 107] for further discussion of the perturbative approach and [34] for a halo

model treatment of IA.

Within the TATT framework, three parameters capture the relevant responses

to the large-scale tidal fields: C1, C2, and C�, corresponding respectively to a linear
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response to the tidal field (tidal alignment), a quadratic response (tidal torquing),

and a response to the product of the density and tidal fields (see [15] for more de-

tails). To date, the most frequently used intrinsic alignment model in the literature

is known as the Nonlinear Alignment Model (NLA; [16, 45]), an empirically-based

modification of the Linear Alignment (LA) model of [20,46], in which the fully non-

linear tidal field is used to calculate the tidal alignment term. Within the “TATT”

framework, the NLA model corresponds to only C1 being non-zero. Within this

model, the the GI and II power spectra have the same shape as the nonlinear

matter power spectrum, but are modulated by C1(z) (note the sign convention):

PGI(k) = �C1(z)P(k), PII(k) = C
2
1(z)P(k). (2.2.6)

More generally, in the TATT model, the GI and II power spectra are constructed

according to equations 37-39 in [15], with the k�dependent contributions modu-

lated by the prefactors C1, C2, and C�. In this work, these k�dependent terms are

evaluated using FAST-PT [29, 67], as implemented in CosmoSIS. The model is

set out in some depth in [15] and we refer the reader to that paper for technical

details. The prefactors are given by

C1(z) = �A1C̄1
⇢crit⌦m

D(z)

✓
1 + z

1 + z0

◆↵1

. (2.2.7)

C2(z) = 5A2C̄1
⇢crit⌦m

D2(z)

✓
1 + z

1 + z0

◆↵2

. (2.2.8)

C̄1 is a normalisation constant, by convention fixed at a value C̄1 = 5⇥10�14
M�h

�2Mpc2,

obtained from SuperCOSMOS (see [17]). Related to this convention, the leading
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factor of 5 in equation 2.2.8 is included to account for the di↵erence in the windowed

variance produced by the TA and TT power spectra. With this factor included,

the TA and TT contributions to PII at z = 0, averaged over this window, should

be roughly the same if A1 = A2, aiding in the interpretation of the best fitting

values. Note that this is a matter of convention only, and does not a↵ect our final

cosmological results in any way.

The denominator z0 is a pivot redshift, which we fix to the value 0.62.3 The di-

mensionless amplitudes (A1, A2) and power law indices (↵1,↵2) are free parameters

in this model.

As mentioned above, the model also includes a C1� contribution, corresponding

to the product of the density and tidal fields. This term is originally motivated by

the modulation of the IA signal due to the galaxy density weighting (i.e. the fact

that the shape field is preferentially sampled in overdense regions [14]). In this case,

within the TATT model, we have

C1� = bTAC1, (2.2.9)

where bTA is the linear bias of source galaxies contributing to the tidal alignment

signal. In our baseline analysis, rather than fixing bTA to this bias value, we sample

over it with a wide prior, allowing the C1� contribution to capture a broader range of

3This value was chosen in Y1 to be approximately equal to the mean source redshift. Although

our cosmological results are insensitive to this choice, it is relevant to how one interprets our IA

constraints, and we maintain this value for the Y3 analysis
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nonlinear alignment contributions. We note that this is a departure from previous

studies to have used this model [15, 82, 101], all of which held bTA = 1 fixed.

As noted above, in the limit A2, bTA ! 0, the TATT model reduces to the NLA

model. It is thus useful to think of NLA as a sub-space of the more complete

TATT model, rather than a distinct alternative model. Given the sensitivity of

IAs to the details of the galaxy selection, and in the absence of informative priors,

we choose to marginalise all five IA parameters (A1, A2,↵1,↵2, bTA), governing the

amplitude and redshift dependence of the IA terms, with wide flat priors. While

a redshift evolution in the form of a power-law, captured by the index ↵i, is a

common assumption, the A(z) coe�cient could, in theory, have a more complicated

redshift dependence. We seek to test the impact of this assumption by rerunning

our analysis with a more flexible parameterization, whereby the IA amplitude in

each redshift bin Ai is allowed to vary independently. It is finally worth remarking

that the TATT model predicts a non-zero B-mode power spectrum PII,BB. We

tipically find B-modes small enough so they can be neglected.

2.2.2 Nonlinear Power Spectrum and Baryons

We have so far implied that an exact prediction can be made for the matter power

spectrum P (k). This is not, however, entirely true. There exist significant uncer-

tainties regarding how Dark Matter clusters on relatively small astrophysical scales

(of order 10 Mpc) that come mostly from the fact that numerically computing P (k)
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generally makes the assumption that the overdensities being described are small,

such that the density contrast defined in eq. (1.1.8) is � ⌧ 1. This approximation

ensures that structure formation equations such as the continuity equation remains

linear in �. That is certainly not the case for the most massive structures in the

universe, galaxy clusters, which normally reach � & 200, in which case we have to

deal with nonlinear scales in the matter power spectrum.

Furthermore, complicated baryonic feedback processes become important when

overdensities are large, and the assumption that gravity alone dictates the distribu-

tion of matter starts breaking down. Approximations in the nonlinear clustering of

matter on small scales, including the impact of baryonic e↵ects, are a key modeling

choice for the cosmic shear signal.

To model the nonlinear matter power spectrum, we use HALOFIT [94] with

updates from [99]. These prescriptions are basically fitting formulas for di↵erent

cosmologies which are calibrated by expensive sets of simulations.

Another component that can modify the power spectrum on nonlinear scales4 is

a nonzero neutrino mass. Generally, neutrinos do not cluster on scale below their

free-streaming length, so they can cause a suppression on the matter clustering.

The impact of neutrino mass on the matter power spectrum is implemented in

HALOFIT from [13], which introduces some additional uncertainty of potentially

up to 20%. Our definition of angular scales that are removed from the analysis,

4Neutrinos also a↵ect the linear regime of the power spectrum by increasing the clustering

amplitude on very large physical scales.
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however, alleviates concerns regarding the neutrino mass, since they encompass any

physical scales that could be a↵ected by neutrino physics.

Since the modeling of nonlinear astrophysics is highly uncertain, our fiducial

analysis removes scales that could be significantly biased by baryonic e↵ects. For

scale selection, these e↵ects are modeled as a re-scaling of the nonlinear matter

power spectrum

P (k, z) !
P (k, z)DM+Baryons

P (k, z)DM
P (k, z) (2.2.10)

where “DM” refers to the power spectrum from the OWLS (OverWhelmingly Large

Simulations project) dark-matter-only simulation, while “DM+Baryon” refers to

the power spectrum from the OWLS AGN simulation [83,104]. OWLS is a suite of

hydrodynamic simulations with di↵erent sub-grid prescriptions for baryonic e↵ects.

We use this particular OWLS simulation for two reasons. First, it is the one which

deviates most from the dark matter-only case in the relevant scales of the matter

power spectrum; given we are cutting scales based on the size of this deviation, this

is a conservative choice. Secondly, McCarthy et al. [66] find that of the OWLS,

the AGN simulation best matches observations of galaxy groups in the X-ray and

optical, so arguably it is the most realistic.

We remove any angular scales ✓i from the ⇠±(✓i) data vector that would have

a fractional contribution from baryonic e↵ects exceeding 2% at any physical scale.

This removes a significant number of data points, particularly in ⇠�, on small scales.

In general we find that our cuts in scale to remove parts of the cosmic shear data
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vector contaminated by potential baryonic e↵ects are su�cient to alleviate any

potential bias due to uncertainties in modeling nonlinear matter clustering.

2.2.3 Point-Spread Function Modeling Errors

A robust treatment of the Point-Spread Function (PSF) is crucial for unbiased

cosmic shear measurements. The PSF is a “blurring” of galaxy images caused

by a combination of many sources: atmospheric turbulence, telescope optics, etc.

These contamination manifest on galaxy images as a convolution of the image with

a PSF kernel. This kernel needs to be modeled and the PSF deconvolved from

galaxy images in order for an appropriate measurement of the shapes (e1,e2) to be

obtained.

Imperfect modeling or deconvolution of the PSF can produce coherent additive

and multiplicative shear biases, both of which contaminate the cosmic shear sig-

nal [72]. In [113], we identified spatially correlated ellipticity errors in the PSF

modeling. We model the impact of PSF model ellipticity errors on the inferred

shear using the linear relation

�esys = �(ep � e⇤) = �q (2.2.11)

where ep is the PSF model ellipticity, e⇤ is the true PSF ellipticity and therefore q is

the PSF model ellipticity residual. We use this model as a first-order approximation

for realistic PSF uncertainties. If, as well as PSF modeling errors, there are also

errors in the deconvolution of the PSF model from the galaxy image, one might
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also expect a systematic bias that is proportional to the PSF model ellipticity

(sometimes this term is referred to as PSF leakage), such that the model for the

shear bias becomes

�esys = ↵ep + �q (2.2.12)

Note that we have no reason to expect non-zero ↵ from Metacalibration, since it uses

a circularized PSF (that is, the PSF is first rotated several times about its center

before the deconvolution, so there is no preferred “leakage direction” and therefore

no ↵ term). On the other hand we expect all shear estimation algorithms to have

a non- zero �; even a ‘perfect’ shear estimator has to assume a PSF model, and

errors in that PSF model will propagate to errors in the shear estimation (Paulin-

Henriksson et al. [72] estimate � for an un-weighted moments shear estimator).

In [113], we measure a significant correlation between the estimated shear and the

PSF model ellipticity. This could be evidence for nonzero ↵, but could also arise

from correlations between the PSF model ellipticity and the PSF ellipticity residuals

even for ↵ = 0. We demonstrate below that the latter is the most likely explanation.

While we have an estimate of ep at each galaxy position, we can only estimate

q at the position of stars. This comes from the very nature of PSF estimation.

Since stars are too small to be resolved by the telescope, their brightness profile is

formally a delta function on the CCD pixel where the star is located. Therefore,

since the convolution of a delta function with some kernel results in the kernel itself,

the observed shape of the star becomes the estimate for the PSF kernel.

47



Since PSF’s are known at the location of stars, we use cross-correlations between

the galaxy and star samples in order to simultaneously estimate ↵ and �. To do

this, we use the following cross-correlations

heobsepi = ↵ hepepi+ � hqepi (2.2.13)

heobsqi = ↵ hepqi+ � hqqi (2.2.14)

Note that in the above, the angle-brackets as usual denote correlations of spin-2

quantities; we use the ⇠+(✓) statistic for all of these. The equations above provide

a means to find ↵ and �, which are taken to be free parameters, because we can

measure the correlations hepepi, hqepi, hepqi and hqqi from the star catalog described

in [113]. Solving for ↵ and � we find, as expected, that ↵ is consistent with zero

and � ⇠ �1. Constraints for each separate redshift bin are shown in Figure 2.2.

Given these estimates of �, we estimate the impact of PSF model ellipticity errors

on our cosmological parameter inference as follows.

The expected systematic contamination of ⇠ij, where ij denotes the redshift bin

pair, is

⇠
PSF
+ = h�i�ji

�
hqqi � hq1i

2
� hq2i

2� (2.2.15)

where the second and third terms on the RHS arise because we are subtracting the

mean ellipticity from each tomographic bin to correct for scale-independent additive

biases. We expect that on large scales (where additive biases are most significant), �

is uncorrelated between galaxies, and therefore make the assumption that h�i�ji =
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Figure 2.2: Constraints on �, the proportionality constant when assuming a lin-

ear relationship between inferred shear and PSF model ellipticity residual. Errors

quoted are 68% confidence intervals. Extracted from [101].

h�ii h�ji. The measured hqqi (also known as the first “⇢-statistic”, ⇢1 [80]), and

the best-fit � values from Figure 2.2, we produce a contaminated prediction of our

data vector, which we then analyze using our parameter estimation framework to

check for biases in cosmological parameters that this level of contamination would

induce. We thus verify that the level of impact on cosmological parameters is

entirely negligible.

2.2.4 Photometric Redshift Uncertainties

A tomographic cosmic shear measurement requires an assignment of each source

galaxy to a redshift bin i, and its interpretation requires an accurate estimation of

the redshift distribution of galaxies in each redshift bin, ni(z). The procedures for

doing so, and for assigning uncertainties to ni(z), are described fully in [48]. In

this analysis, galaxies in the shape catalogs are assigned to the four redshift bins
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listed shown in Figure 1.3 by the mean of the photo-z posterior p(z) estimated from

DES griz flux measurements. The redshift distribution of each bin is constructed

by stacking a random sample from the p(z) of each galaxy. The photo-z posteriors

used for bin assignment and ni(z) estimation in the fiducial analysis of DES Y1 are

derived using the Bayesian photometric redshift (BPZ) methodology [6].

One notable complication when compared to previous cosmic shear studies is

the direct correction of photo-z induced selection biases in Metacalibration, which

requires calculating the impact that shearing a galaxy image has on the photometric

redshift determination. We thus construct a total of six versions of our photo-

z estimates based on various photometric measurements: a) the original Multi-

Epoch Multi-Object Fitting (MOF) griz-band photometry, b) the measurements of

griz-band photometry from the unsheared Metacalibration galaxy fit, and c) four

versions of the griz-band photometry from the four sheared Metacalibration galaxy

fits. In all cases, the redshift distribution ni(z) of each bin is reconstructed using

BPZ estimates from MOF, which gives a better estimate of the shape of the redshift

distribution.

To calculate the Metacalibration selection bias correction due to redshift se-

lection, we then construct the galaxy selection in each tomographic bin from the

photo-z estimates using both the unsheared Metacalibration photometry and the

four sheared photometries. We use these five selections, in addition to all other

selection criteria such as signal-to-noise cuts, to construct the component of the
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selection bias correction Rs utilized in Section 2.1.

Our adopted model for the redshift distribution assumes that the true redshift

distribution in each bin is related to our measured distribution such that:

ni(z) ! ni(z +�z), (2.2.16)

where �z is the di↵erence in the mean redshift of the true and measured n(z).

Notice that this e↵ect propagates down to the correlation functions ⇠± starting

from the kernel definition in eq. (1.2.40). This is a su�cient description of the

photo-z uncertainty for the current cosmic shear analysis, since deviations in the

shape of the n(z) are subdominant to the impact of the mean z, for reasonable

variance in the shape at the level of precision necessary for the DES Y1 analysis.

We derive constraints on �zi for the estimated redshift distributions by com-

parison of the mean redshift in each bin to that from two independent methods:

1. The mean, high-quality photo-z of a sample of galaxies from the COS-

MOS2015 catalog [62], matched to resemble the source galaxies in griz flux and

pre-seeing size [48].

2. In the lowest three redshift bins, the clustering of source galaxies with Red-

magic5 galaxies at 0.15 < z < 0.85, for which accurate and precise photometric

redshifts can be derived from DES photometry.

We will refer to these as the ‘COSMOS’ and ‘WZ’ redshift validation methods,

5We will define this galaxy sample later, when combining cosmic shear with galaxy clustering

results in DES Y1
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respectively. Their constraints on �zi are independent and consistent for the first

three bins and of comparable uncertainty. We thus combine them to provide a

Bayesian prior on the systematic parameters �zi at the level of ±0.02.

Estimation of the redshift distribution of the lensing source galaxies is one of the

most di�cult components of a broad- band cosmic shear survey like DES. Along

with the use of two independent methods to constrain �zi, Sec. IX C in [101] has

presented several tests of the robustness of the DES Y1 cosmological results to the

methods and assumptions of our ni(z) estimates.

2.2.5 Multiplicative Shear Errors

Some systematic uncertainties can cause a multiplicative error in the ellipticity

estimates. One could characterize multiplicative (and also additive) errors as

e
a,i = (1 +mi)e

a,i
true + ci (2.2.17)

where a refers to the two shear components (a = 1, 2), and i refers to a redshift

bin. In DES Y1, we show that no additive errors ci can cause a significant impact

on our analysis, in particular those coming from PSF errors in equation (2.2.11),

so we simply consider ci ! 0 from now on. The multiplicative bias mi, however

is harder to rule out. It can come, in principle, from the PSF leakage explored in

the previous section (which was actually shown to be negligible in DES Y1) as well

as blending errors, whereby the shapes of galaxies whose images overlap on a given

line of sight are severely biased. If multiplicative biases cannot be ruled out, they

52



propagate into biases on the tomographic correlation functions that look like

⇠
ij
± = (1 +mi)(1 +mj)⇠

ij
±,true. (2.2.18)

Since we cannot rule out the impact of these multiplicative errors, we perform

image simulations to determine a prior on how large these contaminations can be,

and eventually marginalize over the nuisance parameters mi, mj in our inference.

We use a Gaussian prior on mi of 0.012± 0.023 for Metacalibration.

2.3 Covariance Matrix

The previous sections motivated a large part of the analysis. Since we want to

be able to compute a Likelihood function to predict a Posterior on cosmological

parameters, we also need a covariance matrix for the data and its inverse in order

to compute the likelihood expressed in eq. (2.1.1). Obtaining covariance matrices

is an area of active research; methods can be broadly separated into 3 categories:

estimation from numerical simulations, estimation from data directly, and analytical

modeling/computation. We briefly summarize the current state of a↵airs as it is

most relevant for this work.

Firstly, estimating the precision matrix from a set of large, high-resolution nu-

merical simulations using a standard Maximum Likelihood estimator is computa-

tionally prohibitively expensive even for single probe analyses [26] (like cosmic shear

alone); this is even more an issue for the multi-probe case (as when including galaxy
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clustering probes), where covariances are substantially larger. The main reason for

these computational costs is the intrinsic noise properties of the estimator, which

means we require a large ensemble of independent realizations of numerical simula-

tions. Promising approaches can be separated into two main categories. The first is

data compression, which reduces the dimensionality of the covariance matrix. Sec-

ond, recently new estimators with significantly improved noise properties are being

explored.

As a second method, covariance matrices from the data directly (through boot-

strap or Jackknife estimators) avoids any assumptions about cosmological or other

model parameters that need to be specified in the numerical simulation approach

(and in the theoretical modeling approach). However, given the limited survey area,

it is di�cult to obtain a su�ciently large number of regions of sky for the method

to work, and it is unclear if these regions can be treated as independent.

Finally, the analytic computation of weak lensing covariances was detailed in

Schneider et al. [87] and Joachimi et al. [52], which derive straightforward expres-

sions for Fourier and configuration space covariances under the assumption that

density field is Gaussian, so that the four-point correlation of the density field can

be expressed as the product of two-point correlations. On small and intermediate

scales this assumption is inaccurate; analytical expressions of non-Gaussian weak

lensing covariances were derived in e.g. Takada and Jain [98]. These expressions

were generalized to a 3⇥ 2pt analysis in [58]. The main advantage of an analytical
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(inverse) covariance matrix is the lack of a noisy estimation process, which sub-

stantially reduces the computational e↵ort in creating a large number of survey

realizations; the disadvantage is that the modeling of the non-Gaussian covariance

terms, which employs a halo model is less precise compared to sophisticated numer-

ical simulations.

For the DES Y1 analysis we implemented the third option, analytical modeling,

for several reasons. First, the software CosmoLike, set in detail in [58], has an an-

alytical covariance implementation that is fast enough to compute a configuration

space covariance. Second, as noted above there is no estimator noise in this calcula-

tion. Third, the non- Gaussian terms in our covariance are sub-dominant and hence

corresponding uncertainties are unimportant. To validate the analytic option, we

generate 1,200 “lognormal” realizations of the DES Y1 survey footprint using the

software FLASK [110]. The resulting covariance matrix can be seen in Figure 2.3,

which shows both the analytic estimate as well as the FLASK estimates.

2.4 Cosmological Constraints in LCDM wCDM

We finally have all the necessary pieces to obtain the cosmological constraints from

the cosmic shear data measured and shown in Figure 2.1. But firstly, we should

summarize the priors on cosmology and nuisance parameters that are used for the

Bayesian analysis. These priors are shown in Figure 2.4. Notice, in particular, that

we use the simplest model for the intrinsic alignment contamination, the NLA model
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Figure 2.3: The covariance matrix for the cosmic shear data. Since the covari-

ance matrix is symmetric, we plot on the upper triangle the di↵erence between the

FLASK and analytic CosmoLike estimates, and in the bottom triangle the Cosmo-

Like estimate alone. The important aspect of this plot is that the upper triangle

shows mostly residuals around zero and almost no actual structure, which means

the validation of the analytic covariance with FLASK survey realizations is fit for

our purposes.
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expressed in eq. (2.2.6), which is parametrized by 2 parameters: an amplitude A

and a redshift evolution power-law parameter ⌘.

We make a distinction of 2 di↵erent cosmological models under consideration:

⇤CDM and wCDM. The first one corresponds to the vanilla cosmological model

wherein Dark Energy is a cosmological constant ⌦⇤ shown in eq. (1.1.5), which

implies that the equation of state parameter for dark energy is fixed at w = �1.

When we free this parameter and marginalize over it, we have a model in which

dark energy is dynamical and evolves in redshift. Presently, there are no statistically

significant cosmological measurements that infer w 6= 1.

Given the size and quality of the DES Y1 shape catalogs, we are able to make

a highly significant statement about the robustness of the standard ⇤CDM cosmo-

logical model. Our measurements of cosmic shear probe the evolution of nonlinear

fluctuations in the underlying matter field and expansion of space across a very

large volume around z ⇡ 0.6. By comparison, equally constraining measurements

of the CMB at z = 1100 use information from linear perturbations in the radiation

field to constrain the same model eight billion years before light left the galaxies

we now observe in DES. Comparing the prediction of these very di↵erent probes at

the same redshift via the parameter S8 allows us to test whether these results are

consistent within the ⇤CDM model to high precision. We define S8 as a lensing

amplitude parameter that exploits the degeneracy between the matter density ⌦m
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Figure 2.4: Priors on cosmological and nuisance parameters utilized in the DES Y1

analysis published in [101].

58



and the variance in a 8Mpc h�1 radius �8 as defined in eq. (1.1.14) as

S8 = �8

p
⌦m/0.3. (2.4.1)

While this parameter picks out only the well constrained amplitude of the correla-

tion functions ⇠±, we can simply recast the entire discussion on Section 1.1 regarding

the �8 tension in terms of this new parameter.

Using the fiducial modeling choices described in the previous sections, we use

cosmic shear from the first year of the Dark Energy Survey to constrain both the

⇤CDM and wCDM models with varying neutrino mass to produce tight cosmo-

logical constraints from cosmic shear. In [2], our cosmic shear results are further

combined with galaxy-galaxy lensing and galaxy clustering to significantly improve

these constraints. When comparing with external data, it is important to note that

we vary ⌦⌫h
2 in our fiducial analysis, and thus all results we compare to, and so

the central values and uncertainties of parameters may di↵er from those previously

published for these data.

We marginalize over a total of 6 cosmological parameters in the fiducial ⇤CDM

model, including a free neutrino mass density, and 10 systematic or astrophysical

parameters. These are listed in 2.4. Our fiducial ⇤CDM constraints in the �8�⌦m

and S8�⌦m planes are shown in Figure 2.5. The DES Y1 cosmic shear constraints

are shown by the gray filled contours, while the previous best real-space cosmic shear

constraints from the KiDS survey [44] are shown in blue, and Planck constraints

from the CMB [75] in filled green, for comparison. Both 68% and 95% confidence
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levels are shown. For consistency, previous constraints have been reanalyzed in the

parameter space used in this work (see Fig. 2.4), including varying ⌦⌫h
2. We show

the impact of fixing that neutrino parameter in our fiducial ⇤CDM analysis in Fig.

2.6.

These constraints on S8 are also visually summarized in Fig. 2.7, where we

distinguish variations on the fiducial setup that are not necessarily expected to give

consistent results (e.g., by neglecting astrophysical systematics) by an asterisk. We

find a 3.5% fractional uncertainty on S8 = 0.782±0.027 at 68% CL, which is a factor

of 2.5 improvement over the constraining power of our Science Verification results.

We see similar improvements in the constraint on ⌦m, which is more representative

of the gain in the direction of degeneracy. We expect further significant improve-

ments with subsequent years of DES data such as DES Y3, which are more than

tripling the sky coverage of our shape catalogs and double the e↵ective integrated

exposure time per galaxy.

For wCDM, we marginalize over a total of 7 cosmological parameters, including

a free neutrino mass density, and 10 systematic or astrophysical parameters. These

are again listed in Fig. 2.4. Our fiducial wCDM constraints are shown in Fig. 2.8.

We find a 4.8% fractional uncertainty on S8 = 0.777 ± 0.036 at 68% CL, which

is more than a factor 2 improvement over the constraining power of our Science

Verification results. We find a dark energy equation-of-state w = 0.95± 0.33 using

DES cosmic shear alone.
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Figure 2.5: The posterior distribution on cosmological parameters from DES Y1

[101], KiDS [44] and Planck [75]. The S8 tension referred to in Section 1.1 is

interpreted in this figure as the mild inconsistency between results from the Planck

satellite and low-z probes such as DES and KiDS.
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Figure 2.6: The posterior distribution on cosmological parameters from DES Y1

[101] while fixing the neutrino mass parameter ⌦⌫h
2 as well as changing analysis

choices regarding the nuisance parameters �z and shear calibration biases mi.
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Figure 2.7: The marginalized 1-D posterior distribution on S8 from DES Y1 [101],

under di↵erent assumptions and analysis choices. The remarkable fact that any

specific choice of parametrization leads to di↵erences within 1� (68% C.L.) of the

fiducial constraints is reassuring and shows the robustness of our cosmic shear re-

sults.
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Figure 2.8: The marginalized 2-D posterior distributions in wCDM from DES Y1

[101]. While cosmic shear alone has a relatively weak constraining power on w, we

obtain w = 0.95± 0.33, a result which is consistent with ⇤CDM at 68% CL.
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While we find an equally good fit for wCDM as we did for ⇤CDM, we can further

compare the relative Bayesian evidence for each model via the Bayes factor. The

Bayesian evidence, or probability of observing a dataset D given a model M with

parameters p, is

P (D|M) =

Z
d
N
pP (D|p,M)P (p|M) (2.4.2)

and the Bayes factor comparing the evidence for the wCDM and ⇤CDM models is

then

K =
P (D|wCDM)

P (D|⇤CDM)
. (2.4.3)

The interpretation of the Bayes factor can be characterized in multiple ways, e.g [56].

We find log(K) = 1.4, which indicates no preference for a model which allows w 6= 1.
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Chapter 3

Constraints on Extended

Cosmological Models

3.1 Revisiting the ⇤CDM Paradigm

We now turn our attention to models that go beyond the usual explorations of what

cosmological model is more appropriate to describe the observable universe1. Let

us recall what we know of the vanilla cosmological paradigm.

Evidence for dark matter [114] and the discovery of cosmic acceleration and thus

evidence for dark energy [73, 78] were pinnacle achievements of cosmology in the

20th century. Yet because of the still-unknown physical mechanisms behind these

two components, understanding them presents a grand challenge for the present-

day generation of cosmologists. Dark matter presumably corresponds to an as-

1This chapter was extracted from [3], to which LFS contributed in the writing and analysis.
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yet undiscovered elementary particle whose existence, along with couplings and

other quantum properties, is yet to be confirmed and investigated. Dark energy is

even more mysterious, as there are no compelling models aside, arguably, from the

simplest one of vacuum energy.

Dark matter and dark energy leave numerous unambiguous imprints in the ex-

pansion rate of the universe and in the rate of growth of cosmic structures as a

function of time. The theoretical modeling and direct measurements of these sig-

natures have led to a renaissance in data-driven cosmology. Numerous ground- and

space-based sky surveys have dramatically improved our census of dark matter and

dark energy over the past two decades, and have led to a consensus model with

5% energy density in baryons, 25% in cold (nonrelativistic) dark matter (CDM),

and 70% in dark energy. These probes, reviewed in [35,108], include the cosmic mi-

crowave background, galaxy clustering including the location of the baryon acoustic

oscillation (BAO) feature and the impact of redshift space distortions (RSD); dis-

tances to type Ia supernovae (SNe Ia); weak gravitational lensing, given by tiny

distortions in the shapes of galaxies due to the deflection of light by intervening

large-scale structure; and the abundance of clusters of galaxies.

The simplest and best-known model for dark energy is the cosmological con-

stant. This model, represented by a single parameter given by the magnitude of

the cosmological constant, is currently in good agreement with data. On the one

hand, vacuum energy density is predicted to exist in quantum field theory due
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to zero-point energy of quantum oscillators, and manifests itself as a cosmologi-

cal constant: unchanging in time and spatially smooth. On the other hand, the

theoretically expected vacuum energy density is tens of orders of magnitude larger

than the observed value as has been known even prior to the discovery of the ac-

celerating universe. Apart from the cosmological constant, there exists a rich set of

other dark energy models including evolving scalar fields, modifications to general

relativity, and other physically-motivated possibilities with many possible avenues

to test them with data. Testing for such extensions of the simplest dark energy

model on the present-day data has spawned an active research area in cosmology,

and is the subject of this present section.

In 2017 the DES collaboration published the analyses of its first year of data

(Y1). It presented results which put constraints on certain cosmological parame-

ters derived from their late-universe imprints in galaxy surveys at the same level

of precision as the constraints obtained on these same parameters from their early-

universe signatures in the CMB data. These results, described in [2] (hereafter

Y1KP) are based on the two-point statistics of galaxy clustering and weak gravi-

tational lensing. The combined analysis of the three di↵erent two-point correlation

functions (galaxy clustering, cosmic shear, and the galaxy-shear cross-correlation,

typically referred to as galaxy-galaxy lensing) is the end product of a complex set of

procedures which includes the analysis pipeline and methodology, its validation on

realistic simulations, the creation of shape catalogs, the estimation and validation
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of the redshift distribution for di↵erent galaxy samples, measurement and deriva-

tion of cosmological constraints from the cosmic shear signal, galaxy–galaxy lensing

results and the galaxy clustering statistics. Both alone and in combination with

external data.

In Y1KP we considered only the two simplest models for dark energy: the

standard cosmological constant ⇤CDM model and a wCDM model with an extra

parameter (the dark energy equation-of-state w) accounting for a constant relation

between the pressure and the energy density of the dark energy fluid (p = w⇢)).

In this paper we explore the impact of the DES Y1 data on the analysis of a few

extensions of the standard flat ⇤CDM and wCDM models considered in Y1KP,

namely the possibilities of:

• Nonzero spatial curvature;

• New relativistic degrees of freedom;

• Time-variation of the dark energy equation-of-state;

• Modifications of the laws of gravity on cosmological scales.

We describe these extensions in more detail below. Our analysis applies the same

validation tests with respect to assumptions about the systematic biases, analysis

choices, and pipeline accuracy, as previously done in Y1KP. We also adopt the

parameter-level blinding procedure used in that work, and we do not look at the

final cosmological constraints until after unblinding, when the analysis procedure
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and estimates of uncertainties on various measurement and astrophysical nuisance

parameters were frozen. Validation and parameter blinding are also described in

further detail below. Our study e↵ectively complements and extends a number of

studies of extensions to ⇤/wCDm in the literature using state-of-the-art data, e.g.

by Planck [75], the Baryon Oscillation Spectroscopic Survey (BOSS) [4], the Kilo

Degree Survey (KiDS) [44,53] and more recently by using the Pantheon compilation

of SNe Ia data [88]. These studies report no significant deviations from ⇤CDM. We

will comment on the comparison of our results to these existing constraints in the

conclusion.

3.2 Extended Cosmologies

We assume the same set of ⇤CDM cosmological parameters described in Y1KP,

then supplement it with parameters alternately describing four extensions. We

parametrize the matter energy density today relative to the critical density ⌦m,

as well as that of the baryons ⌦b and of neutrinos ⌦⌫h
2. Moreover, we adopt the

amplitude As and the scalar index ns of the primordial density perturbations power

spectrum, as well as the optical depth to reionization ⌧ , and the value of the Hubble

parameter today H0. Except in the case of varying curvature, we assume that the

universe is flat and, except in the case of varying dark energy, we assume that it is

⇤-dominated with w = 1; under those two assumptions, ⌦⇤ = 1�⌦m. Note that the

amplitude of mass fluctuations �8 is a derived parameter, as is the parameter that
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decorrelates �8 and ⌦m, S8 ⌘ �8

p
⌦m/0.3. The fiducial parameter set is therefore

✓base = {⌦m, H0, ⌦b, As, ns, (⌧)} (3.2.1)

where the parentheses around the optical depth parameter indicate that it is used

only in the analysis combinations that use CMB data. In addition to this set of

⇤CDM parameters, we use the following parametrization for each of the extension

models:

• Spatial curvature: ⌦k;

• The e↵ective number of neutrinos species Ne↵;

• Time-varying equation-of-state of dark energy: w0 & wa;

• Tests of gravity: ⌃(a), µ(a)

The cosmological parameters describing these extensions, along with priors given

to them in our analysis, are given in Figure 3.1.

3.2.1 Spatial Curvature

Standard slow-roll inflation predicts that spatial curvature is rapidly driven to zero.

In this scenario, the amount of curvature expected today is ⌦k ⇠ 10�4, where

the tiny deviation from zero is expected from horizon-scale perturbations but will

be very challenging to measure even with future cosmological data. Departures

from near-zero curvature are however expected in false-vacuum inflation. With
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Figure 3.1: The extended cosmological parameters introduced in our analysis, and

their respective priors.

curvature, and ignoring the radiation density whose contribution is negligible in the

late universe, the Hubble parameter initially shown in eq.(1.1.5) generalizes to

H(a) = H0

p
⌦ma

�3 + (1� ⌦⇤ � ⌦k) + ⌦ka
�2 (3.2.2)

so that ⌦k < 0 corresponds to spatially positive curvature, and the opposite sign to

the spatially negative case. In this work, we compare constraints on ⌦k using DES

data alone, as well as with combinations of subsets of the external data described.

We do not modify the standard Halofit prescription for prediction of the non-

linear power spectrum for nonzero values of ⌦k. Simulation measurements of the

nonlinear spectrum for nonzero values of ⌦k do not exist to su�ciently validate this

regime. However, it is not an unreasonable a priori assumption that the nonlinear

modification to the power spectrum is only weakly a↵ected by curvature beyond

the primary e↵ect captured in the linear power spectrum being modified. We do
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incorporate the impact of ⌦k in the evolution of the expansion and growth, which

is properly modeled as part of the linear matter power spectrum that is modified

by Halofit. We verify that this approximation does not significantly impact our

results by comparing to the case where we restrict our data to scales that are safely

“linear” as described below.

3.2.2 Extra Relativistic Particle Species

Anisotropies in the CMB are sensitive to the number of relativistic particle species.

The Standard Model of particle physics predicts that the three left-handed neu-

trinos were thermally produced in the early universe and their abundance can be

determined from the measured abundance of photons in the cosmic microwave back-

ground. If the neutrinos decoupled completely from the electromagnetic plasma be-

fore electron-positron annihilation, then the abundance of the three neutrino species

today would be

n = Ne↵ ⇥ 113 cm�3 (3.2.3)

with Ne↵ = 3. In actuality, the neutrinos were slightly coupled during e
± annihila-

tion, so Neff = 3.046 in the standard model. Values of Ne↵ larger than this would

point to extra relativistic species. The DES observations are less sensitive to Ne↵

than the CMB, because the e↵ect of this parameter in the DES mainly appears

via the change in the epoch of matter-radiation equality. Nevertheless, DES might

constrain some parameters that are degenerate with Ne↵ so, at least in principle,
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adding DES observations to other data sets might provide tighter constraints.

In the fiducial model, we are allowing for a single free parameter
P

m⌫ , treating

the 3 active neutrinos as degenerate (since they would be approximately degenerate

if they had masses in the range we can probe, > 0.1 eV). There is some freedom

in how to parametrize the extension of a light sterile neutrino, however. If we

attempt to model the addition of a single sterile neutrino, then in principle two

new parameters must be added. For example, if the sterile neutrino has the same

temperature as the active neutrinos, then the parameters can be chosen to be Ne↵,

allowed to vary between 3.046 and 4.046, and ms, the mass of the sterile neutrino.

Two light sterile neutrinos would require two more parameters, etc. However, we

expect that the cosmological signal will be sensitive primarily to the total neutrino

mass density and the number of e↵ective massless species at the time of decoupling,

as captured by Ne↵, so we use only these two parameters,
P

mnu and Ne↵. Note

that a value of Ne↵ appreciably di↵erent than 3 would point to a sterile neutrino

or another light degree of freedom. We give Ne↵ a flat prior in the range [3.0,

9.0], where the lower hard bound encodes the guaranteed presence of at least three

relativistic neutrino species.

3.2.3 Time-evolving Equation of State of Dark Energy

Given the lack of understanding of the physical mechanism behind the accelerating

universe, it is important to investigate whether the data prefer models beyond the
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simplest one, the cosmological constant. In Y1KP, we investigated the evidence for

a constant equation-of-state parameter w = 1. We found no evidence for w 6= 1,

with a very tight constraint from the combination of DES Y1, CMB, SNe Ia, and

BAO of w = �1+0.05
�0.04. We now investigate whether there is evidence for the time

evolution of the equation-of-state w. We consider the phenomenological model that

describes dynamical dark energy [63]

w(a) = w0 + (1� a)wa (3.2.4)

where w0 is the equation-of-state today, while wa is its variation with scale factor

a. The (w0, wa) parametrization fits many scalar fields and some modified gravity

expansion histories up to a su�ciently high redshift, and has been used extensively

in past constraints on dynamical dark energy. It is also useful to quote the value of

the equation-of-state at the pivot wp ⌘ w(ap); this is the scale factor at which the

equation-of-state value and its variation with the scale factor are decorrelated, and

where w(a) is best-determined. Rewriting eq. (3.2.4) as w(a) = wp + (ap � a)wa,

the pivot scale factor is

ap = 1 +
Cw0wa

Cwawa

(3.2.5)

where C is the parameter covariance matrix in the 2D (w0, wa) space, obtained by

marginalizing the full 28 ⇥ 28 covariance over the remaining 26 parameters. The

corresponding pivot redshift is of course zp = 1/ap � 1.

The linear-theory observable quantities in this model are straightforwardly com-

puted, as the new parameters a↵ect the background evolution in a known way, given
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that the Hubble parameter becomes

H(a)

H0
=

⇥
⌦ma

�3 + (1� ⌦m)a
�3(1+w0+wa)e

�3wa(1�a)
⇤1/2

. (3.2.6)

To obtain the nonlinear clustering in the (w0, wa) model, we assume the same

linear-to-nonlinear mapping as in the ⇤CDM model, except for the modified expan-

sion rate H(z). In particular, we implement the same Halofit nonlinear [99] pre-

scription as we do in the fiducial ⇤CDM case. We impose a hard prior w0+wa  0;

models lying in the forbidden region have a positive equation of state in the early

universe, are typically ruled out by data, and would present additional challenges

in numerical calculations. For the same reason we impose the prior w0 < 0.33.

Note also that in our analysis we do implicitly allow the “phantom” models where

w(a) < �1; while not a feature of the simplest physical models of dark energy (e.g.

single-field quintessence), such a violation of the weak energy condition is in general

allowed [19].

3.2.4 Modified Gravity

The possibility of deviations from general relativity on cosmological scales has been

motivated by the prospect that an alternative theory of gravity could o↵er an ex-

planation for the accelerated expansion of the Universe. In the past several years,

numerous works constraining modifications to gravity using cosmological data have

been published, including from the Planck team [22], the Kilo Degree Survey [53],

and the Canada-France-Hawaii Lensing Survey [93]. Recently, stringent constraints
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were made on certain alternative theories of gravity [64,81] via the simultaneous ob-

servation of gravitational and electromagnetic radiation from a binary neutron star

merger with the Laser Interferometer Gravitational Wave Observatory (LIGO) [1].

In what follows, we refer to the scalar-perturbed Friedmann-Robertson-Walker line

element in the conformal Newtonian gauge:

ds
2 = a

2(⌧)
⇥
(1 + 2 )d⌧ 2 � (1� 2�)�ijdx

i
dx

j
⇤

(3.2.7)

In general relativity and without anisotropic stresses,  = �. The parametriza-

tion of deviations from general relativity studied in this work is motivated by theo-

retical descriptions which make use of the quasistatic approximation (see, e.g., [92]).

It can be shown that in the regime where linear theory holds and where it is a good

approximation to neglect time derivatives of novel degrees of freedom (e.g. extra

scalar fields), the behavior of the majority of cosmologically-motivated theories of

gravity can be summarized via a free function of time and scale multiplying the

Poisson equation, and another which represents the ratio between the potentials �

and  . Such a parametrization is an e↵ective description of a more complicated set

of field equations, but this approximation has been numerically verified on scales

relevant to our present work.

There are a number of related pairs of functions of time and scale which can be

used in a quasistatic parametrization of gravity; we choose the functions µ and ⌃,
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defined as

k
2 = �4⇡Ga

2 (1 + µ(a)) ⇢� (3.2.8)

k
2( + �) = �8⇡Ga

2 (1 + ⌃(a)) ⇢� (3.2.9)

where we are working in Fourier space where k is the wavenumber, and � is the

comoving-gauge density perturbation. This version of the parametrization benefits

from the fact that ⌃ parametrizes the change in the lensing response of massless

particles to a given matter field, while µ is linked to the change in the matter

overdensity itself. Therefore, weak lensing measurements are primarily sensitive

to ⌃ but also have some smaller degree of sensitivity to µ via their tracing of the

matter field, whereas galaxy clustering measurements depend only on µ and are

insensitive to ⌃. We find the DES data alone are more sensitive to ⌃ than to µ.

µ(z) = µ0
⌦⇤(z)

⌦⇤
(3.2.10)

⌃(z) = ⌃0
⌦⇤(z)

⌦⇤
(3.2.11)

where ⌦⇤(z) is the redshift-dependent dark energy density (in the ⇤CDM model)

relative to critical density, and ⌦⇤ is its value today. This time dependence has

been introduced in [31], and is widely employed. It is motivated by the fact that in

order for modifications to GR to o↵er an explanation for the accelerated expansion

of the Universe, we would expect such modifications to become significant at the

same timescale as the acceleration begins. We do not model any scale-dependence

of µ/⌃ since it has been shown to be poorly constrained by current cosmological
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data while not much improving the goodness-of-fit [75]. We therefore include only

the parameters µ0/⌃0. In GR, µ0 = ⌃0 = 0. Note that although our choice

of parametrization is motivated by the quasistatic limit of particular theories of

gravity, our analysis takes an approach which is completely divorced from any given

theory. We endeavor instead to make empirical constraints on the parameters µ0/⌃0

as specified by the equations above.

3.3 Validation and Results

We subject our ⇤CDM extensions analyses to the same battery of tests for the

impact of systematics as in Y1KP. The principal goal is to ensure that all of our

analyses are robust with respect to the e↵ect of reasonable extensions to models of

astrophysical systematics and approximations in our modeling. As part of the same

battery of tests, we also test that the range of spatial scales that are used lead to

unbiased cosmological results, and that motivated modifications to our modeling

assumptions do not significantly change the inferred cosmology. In these tests and

the results below, sampling of the posterior distribution of the parameter space is

performed with Multinest [30] and emcee [33] wrappers within CosmoSIS10 [112]

and CosmoLike [58]. While the convergence of Multinest is intrinsic to the sampler

and achieved by verifying that the uncertainty in the Bayesian evidence is below

than some desired tolerance, we explicitly check the convergence of emcee chains. In

order to do so, we compute the autocorrelation length of each walk, then continue
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the walks until a large number of such lengths is reached. The autocorrelation length

estimates how long a chain needs to be in order for new “step” to be uncorrelated

with previous ones. We then split chains into several uncorrelated segments and

verify that marginalized parameter constraints do not change significantly when

these segments are compared with each other. The typical number of samples

of the posterior in these chains is between two and three million. We have also

verified in select cases that this procedure leads to excellent agreement with the

1D marginalized parameter posteriors achieved by Multinest, so both samplers are

used interchangeably in what follows.

In order to verify that our results are robust to modeling assumptions and ap-

proximations, we compare the inferred values of the extension parameters (⌦k, Ne↵,

...) obtained by a systematically shifted, noiseless synthetic data vector. The syn-

thetic data vector is centered precisely on the standard ⇤CDM cosmology, except it

is shifted with the addition of a systematic e↵ect that is not included in our analy-

sis. The goal is to ensure that we do not claim evidence for an extension to ⇤CDM

when the real data contains astrophysical e↵ects more complex than those in our

model. For each systematic e↵ect, we compare the inferred set of extension param-

eters to the fiducial, unmodified extension parameters used to create the synthetic

data (which we refer to as the “baseline” constraint). For all of these tests, for DES

we use the synthetic data vectors (for the baseline case and the systematic shifts

described below), but for the external data sets — CMB, BAO, RSD, and SN Ia
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— we use the actual, observed data vector. The changes to modeling assumptions

that we consider are:

• Baryonic e↵ects: we synthesize a noiseless data vector including a contribution

to the nonlinear power spectrum caused by AGN feedback using the OWLS

AGN hydrodynamical simulation [104] and following the methodology of [59].

• Intrinsic alignments, simple case: we synthesize a noiseless data vector with

the IA amplitude A = 0.5 and redshift scaling ⌘ = 0.5 using the baseline

nonlinear alignment model used in Y1KP. While we explicitly marginalize

over these IA parameters in our analysis, this systematic check is still useful

to monitor any potential biases due to degeneracy between the cosmological

parameters and (A, ⌘) and the presence of non-Gaussian posteriors

• Intrinsic alignments, complex case: we synthesize a noiseless data vector using

a subset of the tidal alignment and tidal torquing model (hereafter TATT)

from [15]. This introduces a tidal torquing term to the IA spectrum that is

quadratic in the tidal field. The TATT amplitudes were set to A1 = 0, A2 = 2

with no z dependence, as was done in [101] when validating the analysis of

Y1KP.

• Nonlinear bias: we test our fiducial linear-bias assumption by synthesizing a

noiseless data vector that models the density contrast of galaxies as

�g = b1� +
1

2
b2

⇥
�
2
� �

2
⇤

(3.3.1)
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where � and �g are the overdensities in matter and galaxy counts respectively,

and the density variance �
2 is subtracted to enforce that the mean of � is

null. While this relationship is formally defined for smoothed density fields,

the results do not depend on the choice of smoothing scale since, e.g., the

variance explicitly cancels with contributions to the two-point correlation.

We are considering scales that are su�ciently larger than the typical region

of halo formation that we neglect higher-derivative bias terms.

• Magnification: we synthesize a noiseless data vector that includes the contri-

bution from magnification to �t and w(✓). These are added in Fourier space

using [7].

• Limber approximation and RSD: we synthesize a noiseless data vector that

uses the exact (non-Limber) w(✓) calculation and include the contribution

from redshift space distortions.

The results of these tests are shown in Fig. 3.2. The columns show the param-

eters describing ⇤CDM extensions, namely. The shaded vertical region shows the

marginalized 68% posterior confidence limit (CL) in each parameter for the base-

line case. The horizontal error bars show how this posterior, fully marginalized over

all other parameters, including the other parameter in two-parameter extensions,

changes with the systematic described in the given row for the case of DES-only

(blue bars) and DES+external (red bars) data. We observe that, except in the
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Figure 3.2: Impact of assumptions and approximations adopted in our analysis,

demonstrated on synthetic data (that is, noiseless DES data centered on the the-

oretical expectation, along with actual external data). Each column shows one of

the cosmological parameters describing ⇤CDM extensions; the dotted vertical line

is the true input value of that parameter in the DES data vector (which does not

necessarily coincide with the parameter values preferred by the external data). The

vertical shaded bands show the marginalized 68% CL constraints in the baseline

model for the DES-only synthetic data (blue) and DES+external. The horizontal

error bars show the inferred constraint for each individual addition to the synthetic

data vector which are listed in rows; they match the shaded bands for the baseline

case. Extracted from [3].
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cases explained below, the marginalized posteriors are consistent with the baseline

analysis in these tests.

Figure 3.2 shows shifts in some DES-only 68% C.L. constraints relative to the

input value shown by the dotted vertical lines. The most pronounced e↵ect is in

the DES-only case for modified gravity parameter µ0 (and, to a slightly smaller

extent, ⌃0 and Ne↵), which is more than 1� away from its true value of zero. Upon

investigating this, we found that the bias away from the input value is caused by the

interplay of two e↵ects: 1) weak constraints, with a relatively flat likelihood profile

in these parameters in certain directions, combined with 2) prior-volume e↵ect,

where the large full-parameter space volume allowed in the direction in which the

parameter is a reasonably good fit ends up dominating the total integrated posterior,

resulting in a 1D marginalized posterior that is skewed away from the maximum

likelihood true value.

Since the baseline results agree with the contaminated cases, we proceed and

show result from these parametrizations on real data. The constraints on curvature

and the number of relativistic species are given in the two panels of Fig. 3.3.

Figure 3.3 indicates that DES alone constrains curvature weakly, showing mild

(⇠ 1�) preference for positive values of ⌦k; note also that this constraint is informed

by the upper prior boundary. The DES-only constraint on Ne↵ is also relatively

weak, and is fully consistent with the theoretically favored value Ne↵ = 3.046.

Moreover, the DES Y1 data do not appreciably change the existing external-data

84



Figure 3.3: Posterior distributions on ⌦k and Ne↵ from DES Y1. The constraining

power of DES+external is mostly dominated by the tighter external posteriors.

constraints on these two parameters.

We now turn to dynamical dark energy and modified gravity constraints. The

DES Y1 data alone are consistent with the cosmological-constant values of (w0,

wa) = (-1, 0); they do not appreciably change the constraint from external data

alone. The extended parameters on which the DES does add nontrivial informa-

tion, however, are the modified gravity ones. Besides tightening constraints, DES

also pushes ⌃0 closer to its ⇤CDM value of zero. An interesting manifestation of

the multidimensionality of the parameter space is that the DES+external value is

lower than either DES or external alone. This arises because DES favors a lower

amplitude of mass fluctuations than that favored by the external data, due to the
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Figure 3.4: Constraints on dark energy parameters (w0, wa) (left panel) and the

modified gravity parameters (⌃0, µ0) (right panel). Blue contours show DES alone,

yellow is external data alone, and red is the combination of the two. Dashed lines

shows the parameter values in the ⇤CDM model (left panel) and in GR (right).

86



lower amplitude of the lensing signal observed by the DES. Because the lensing

amplitude is proportional to the product ⌃0 ⇥ S8, these two parameters are highly

anticorrelated in DES, and the lensing amplitude suppression can be accommodated

by decreasing either of them. Since external data constrain mostly S8 and constrain

it to be high, the DES lensing amplitude is accommodated by shifting ⌃0 down.

These results are shown in Figure 3.4. We apply the Bayesian evidence ratio to all

of the extended parameters above and find no preference for the addition of any of

them to the standard ⇤CDM model. The parameter constraints we find in DES-Y1

data are summarized in Figure 3.5.

Finally, in Figure 3.6, we show the constraints in the ⌦m � S8 plane for the

extended models (solid contours); for comparison, we also show the ⇤CDM model

constraints for DES data alone (dashed contours which are the same in all panels).

The top right corner of each panel shows which extension the plot is referring to.

For ⌦k, Ne↵ and w0-wa extensions, we see that the ⌦m � S8 contour from DES

alone is only modestly increased by marginalization over the additional nuisance

parameter(s). The exception is the modified-gravity case, where the ⌦m�S8 contour

from DES alone is significantly larger and also pushed to smaller values of S8 because

of the amplitude degeneracy between ⌃0 and S8.
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Figure 3.5: Constraints on the parameters describing the extensions of the ⇤CDM

model that we study in this paper. All errors are 68% confidence intervals, except for

Ne↵ where we show the 68% upper bound. The last column shows the improvement

in the goodness-of-fit, ��
2, between the corresponding best-fit extension and the

best-fit ⇤CDM. Note that the sampling error in the ��
2 values is ⇠ 0.5; hence, the

two positive values in the last column (and many of the negative ones) should be

treated as consistent with zero.
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Figure 3.6: Comparison of constraints on the matter density ⌦m and S8 to the

⇤CDM case. The panels illustrate how the S8 � ⌦m constraints broaden and shift

as we allow to vary: curvature (top left), number of relativistic species (top right),

equation-of-state parameters w0 and wa (bottom left), and modified gravity pa-

rameters ⌃0 and µ0 (bottom right). Shaded contours denote DES (blue), external

(yellow), and DES+external (red) constraints. The DES-only ⇤CDM case is shown

in dashed contours, which are the same in each panel.
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3.4 Conclusions

The results in this paper extend the work done in the Y1KP [2] by analyzing the

models beyond flat ⇤CDM and wCDM. In Y1KP, we found good agreement with

the standard cosmological-constant dominated universe, and produced constraints

on the matter density and amplitude of mass fluctuations comparable to those from

the Planck satellite. We now extend that work into four new directions, allowing for:

1) nonzero curvature; 2) number of relativistic species di↵erent from the standard

value of 3.046; 3) time-varying equation-of-state of dark energy described by the

parameters; and 4) modified gravity parametrized by metric potentials. For the first

three of these four extensions, we find that the DES Y1 data alone are consistent

with values of zero curvature, three relativistic species, and dark energy parameters

corresponding to the cosmological constant model. We also find that DES Y1 data

do not significantly improve the existing constraints which combine the Planck 2015

temperature and polarization measurements, BAO measurements from SDSS and

BOSS, RSD measurements from BOSS, and type Ia supernova measurements from

the Pantheon compilation. When DES Y1 information is combined with that from

the external data, the constraints on curvature are ⌦k = 0.0020+0.0037
�0.0032, while that on

the dark-energy equation of state pivot value and its variation are wp = �1.01+0.04
�0.04

and wa = �0.28+0.37
�0.48, respectively. The upper bound on the number of relativistic

species is Ne↵ < 3.28 (3.55) at the 68% (95%) confidence level from the combination

of DES and external data.
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DES Y1 alone provides a stronger constraint on the fourth extension of ⇤CDM

that we consider – modified gravity – giving ⌃0 = 0.43+0.28
�0.29. The apparent DES-

alone preference for positive ⌃0 is consistent with parameter volume e↵ects. When

combining DES with external data, the ⌃0 constraint is shifted downwards with

respect to the external-only constraint, which can be explained by the fact that

DES data prefer a lower lensing amplitude than that predicted by external data

in ⇤CDM. Combining DES Y1 with the external data gives ⌃0 = 0.06+0.08
�0.07 and

µ0 = �0.11+0.42
�0.46 both of which are fully consistent with the ⇤CDM values (⌃0, µ0) =

(0, 0). The results in this work also serve to develop the tools necessary to take

advantage of future constraints on these cosmological models by DES. In particular,

the forthcoming analysis of the DES Y3 data, which will contain information from

three times the area of Y1, should provide very interesting constraints on extensions

of the minimal cosmological model including dark energy and modified gravity.
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Chapter 4

Dark Matter in the Universe

We now turn our attention to the one of the main assumptions of the previous

chapters: the hypothesis that Dark Matter (DM), apart from being cold, is deprived

of any particle interactions. The presentation in the sections below was originally

published in [89]1.

4.1 Introduction: Beyond the CDM Paradigm

The successful standard cosmological paradigm assumes that the dominant fraction

of the matter contained in the universe is in the form of a nonluminous, nearly

collisionless component called dark matter (DM). Furthermore, the clustering of

matter in cosmological scales is often interpreted as evidence in favor of it being

cold; i.e., it was nonrelativistic at the time of its decoupling from the thermal bath

1This article was led and written in its majority by LFS
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of the primordial universe. However, the observed structure on small astrophysical

scales has been claimed to be in tension with the CDM predictions derived from

high-resolution simulations (e.g., [28, 71] for an incomplete list). There are several

aspects to this possible tension. In particular, CDM-only simulations predict that

(1) DM halo densities scale as ⇢dm(r) / r
�1 in the inner ⇠ 1 kpc of galaxies and

(2) the number of satellite halos orbiting a Milky Way–sized halo is O(100� 1000).

The empirical facts that some halos seem to have flat cores (⇢dm / r
0) and that

only O(10) satellites have been found around our galaxy led these mismatches to be

named the “core-cusp problem” and the “missing satellites problem,” respectively.

Proper modeling and implementation of baryonic physics into simulations and the

correction of observational biases have been claimed to alleviate such small-scale

structure problems, though it is unclear whether they are fully resolved.

Spergel & Steinhardt (2000) [95] suggested that a nonzero cross section �̃/mdm

for self-interacting dark matter (SIDM) could also help alleviate those problems.

In the simplest model of SIDM, �̃/mdm is velocity-independent and large when

compared to weak-force scales. Shortly after that initial work, stringent constraints

were derived based on di↵erent observational predictions of SIDM, for instance,

the sphericity (as opposed to triaxiality) of SIDM halos [68] and their evaporation

rates [38]. With the growing sophistication of computational simulations, many of

the previously obtained constraints have been significantly relaxed [23, 57, 74, 79].

In particular, simulations also showed that some level of velocity dependence of the
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cross section is necessary to simultaneously explain the core sizes of dwarf galaxies

and clusters.

Another potential observational consequence of DM self-interactions is an o↵set

between light and mass centroids in cluster mergers. The dominant macroscopic

e↵ect of self-interactions in this case is expected to be analogous to that of a fluidlike

drag force. The key idea is that, besides through gravitation, baryons are insensitive

to SIDM, so stars act as a nearly collisionless component, while halos are decelerated

by a drag force arising from the momentum transfer of DM interactions. The best-

studied example of such a merger is the Bullet Cluster [21]). Constraints �̃/mdm

have been derived on the basis that the separation between its matter centroid (as

inferred from weak-lensing mass maps) and gas centroid (from X-ray emission) are

of a few tens of kpc, consistent with zero within about the 68% confidence level.

Based on the o↵sets within the Bullet Cluster, [65] found �̃/mdm < 5.0cm2 g�1,

while simulations by Randall et al. (2008) [76] found �̃/mdm < 1.25cm2 g�1.

Under SIDM, halos are also subject to evaporation. The upper bounds derived

from the survival of the cluster despite halo evaporation are slightly more stringent:

�̃/mdm < 1.0 cm2 g�1 from [65] and �̃/mdm < 0.7cm2 g�1 [76]. Roughly consistent

constraints were obtained from studies of o↵sets within the Abell 3827 cluster [55]

and from cluster collision images from HST and Chandra [40]. Interestingly, the

o↵sets between member galaxies and DM measured in those cluster mergers seem

to be consistent with standard CDM when systematic e↵ects of projection and
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mischaracterization of the centroids are significant. The di↵ering constraints from

evaporation and centroid o↵sets arise from the di↵erent assumptions on the mi-

croscopic behavior of DM interactions. It is commonly asserted that the desired

range of cross sections necessary to explain the observed mass profiles of galaxies is

around �̃/mdm ⇠ 0.5 � 5.0cm2 g�1 ( [103] and references therein), with the upper

bound being already severely constrained. It is thus notable that the simplest SIDM

models have not been unambiguously ruled out to date.

In this context, galaxy clusters provide especially interesting environmental con-

ditions for the study of DM interactions. If a flat core is present, the DM densities at

the inner regions of O(1014� 1015)M� cluster halos can reach around 10�2
M�pc�3,

or even as dense as 100 M�pc�3 in analytical cuspy profiles, while fairly concentrated

galactic halos reach around 10�1
M�pc�3 in the inner 1 kpc.

These densities enhance the number of interactions between DM particles, lead-

ing to potentially observable e↵ects resulting from any additional drag force acting

on DM. In this work, we consider a disk galaxy in its galactic halo (hereafter sub-

halo) falling into a galaxy cluster (hereafter the main, host halo). While o↵sets

between the luminous components of cluster mergers and their total matter cen-

troids have been measured, the analogous measurement for a galactic halo would

likely be highly dominated by noise, since the weak-lensing signal of a single such

halo is not accurate enough to determine its centroid. However, we show that indi-

rect e↵ects on disk- galaxy morphologies resulting from relatively small baryon-DM
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displacements could be potentially measurable.

In this work, we employ numerical simulations to characterize two types of

distortions caused on stellar disks in SIDM subhalos when an e↵ective drag is the

dominating factor. The first distortion is the warping of the galaxy disk: a U-

shaped bending along the direction of motion. A second, longer-lasting e↵ect is

the enhanced thickening of the disk once the warp mode decays. These U-shaped

warps are not common in standard CDM; tidal interactions and kinematic processes

usually lead to S-shaped distortions, and HI disks are known to exhibit prominent

S-shaped warps [9]. For example, in a study of 26 edge-on disk galaxies by [36], 21

HI warps were found, only two of which were U-shaped. However, these two were

both highly disturbed and strongly interacting with visible nearby companions. In

what follows, we show that DM self-interactions may lead to a U-shaped warp that

is not necessarily caused by close encounters with neighboring galaxies.

4.2 Analytic and Numerical Models for Galaxy

Warps

4.2.1 SIDM as a Drag Force

For colliding DM halos, the microscopic nature of the interactions between the DM

particles determines the dominant macroscopic signatures that will be observable

in such systems. The two main macroscopic e↵ects that have been considered in
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the literature are the evaporation rate of the smaller halo and an e↵ective drag that

each halo experiences as it moves through the environment of the other halo. For

short-range interactions with isotropic cross sections, immediate halo evaporation

is the most dominant e↵ect [54, 65]. As a large fraction of collisions have a high

momentum transfer, particles may be expelled from their host’s potential, leading

to subhalo evaporation. The observation of surviving low-mass subhalos therefore

puts a stringent upper bound on the cross section of isotropic scattering, as well as

the fraction of collisions that result directly in the expulsion of DM particles from

the subhalo. On the other hand, if we consider interactions where the cross section

is velocity-independent and anisotropic - that is, there are many more small-angle

scatterings than there are large-angle scatterings - frequent interactions are possible

without completely disrupting the subhalo. In this scenario, individual interactions

are usually unable to expel particles from the subhalo. However, there is a nonzero

cumulative evaporation rate resulting from multiple interactions. As shown in [54],

frequent and anisotropic self interactions also lead to an e↵ective “drag” force, and

the rate of deceleration due to the drag force is comparable to the rate of cumulative

evaporation. For these interactions, therefore, the macroscopic e↵ects of the drag

force can be comparable to the e↵ects coming from evaporation [61].

To understand the origin of the drag, we consider a two-particle interaction in

the center of mass (COM) frame. If the scattering angle in this frame is ✓, then in

the direction parallel to the relative velocity of the two particles, the change in the
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velocity of one particle is given by

�vk = �v(1� cos ✓) , (4.2.1)

where v is the initial velocity of the particle in the COM frame. For isotropic

interactions, cos ✓ is drawn from an uniform distribution between �1 and 1. For

anisotropic interactions of the form that we are interested in, cos ✓ is drawn from a

distribution that is peaked near 1 and �1, and has very low probability for collisions

where cos ✓ ⇠ 0. In particular, we use the same form of the di↵erential cross section

for the anisotropic interactions as was used in [54]:

d�

d⌦
/

1 + cos2 ✓

1� cos2 ✓
. (4.2.2)

If collisions are frequent, and if individual interactions only change the initial

velocity by a small amount, we can integrate over all possible interaction angles

to obtain the average change in the velocity in the parallel direction of a particle

passing through a sea of other particles. In a time interval dt, the number of

interactions is given by

dN =
⇢

mdm
(v dt)

d�

d⌦
d⌦ , (4.2.3)

where d�/d⌦ is the di↵erential cross section, ⇢ is the ambient density, and mdm is

the mass of the dark matter particle. Using this, we can write the total change in

the parallel velocity as

dvk = �
⇢ v

2
dt

mdm

Z
d�

d⌦
(1� cos ✓)d⌦ . (4.2.4)
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Since we assume that the dark matter particles are indistinguishable, we follow [54],

and define the momentum transfer cross section �T as

�T = 4⇡

Z 1

0

d�

d⌦
(1� cos ✓) d(cos ✓) . (4.2.5)

Once again, this expression makes sense only when the overall direction and velocity

change per particle in the time interval dt is small compared to the incoming velocity.

For our choice of the di↵erential cross section, this is a safe approximation to make

for su�ciently small time steps. The integral runs over the scattering angle 0 

✓  ⇡/2 since, for indistinguishable particles, a scattering angle above ⇡/2 is the

same as an equivalent scattering angle below ⇡/2 but with a relabeling of the two

outgoing particles. Using the expression for �T , equation (4.2.4) reduces to

dvk = �
⇢ v

2
dt

2mdm
�T (4.2.6)

Therefore, this change in the parallel velocity can be written as an e↵ective drag

deceleration due to the anisotropic self-interactions as a particle moves through a

sea of other dark matter particles, with

Fdrag

mdm
= �

1

2

✓
�T

mdm

◆
⇢v

2
. (4.2.7)

We note that for isotropic cross sections where d�/d⌦ is a constant, the momentum

transfer cross section �T and the total cross section �̃ is given by �̃ = 2�T . Therefore,

we can re-cast equation (4.2.7) in terms of �̃ so that our results can be compared

directly to results for isotropic self-interactions. This yields

Fdrag

mdm
= �

1

4

✓
�̃

mdm

◆
⇢v

2
. (4.2.8)

99



We note that we assumed that the relative velocity between the two colliding halos,

or the velocity of a subhalo falling into the host halo, is much larger than the velocity

dispersion of the subhalo, and therefore the self-interactions between the subhalo

and the particles of the host halo dominate over self-interactions between particles

of the subhalo itself.

4.2.2 The Cluster and Subhalo System

We now describe the astrophysical system which is the focus of this study. Consider

a spherically symmetric galactic subhalo which contains a disk galaxy seen edge-on

by the observer. The centers of mass of both the subhalo and the disk initially

coincide. The whole system moves along a trajectory rsh with velocity vsh through

a host dark matter halo of density ⇢h (a galaxy cluster), assumed to be at rest.

For typical orbital velocities and halo densities, equation (4.2.8) leads to a non-

negligible contribution of SIDM to the motion of the subhalo, decreasing its infall

acceleration and consequently distorting the galaxy disk. We present a schematic

description of the system in Figure 4.1.

To simplify our treatment of this problem, we make several approximations

1. The galaxy disk is made of stars only, and they are perfectly collisionless. We

assume that the gravitational e↵ect of the gaseous component of the disk is

irrelevant to the dynamics.

2. The galaxy disk experiences the gravitational attraction towards the dark
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Figure 4.1: A schematic view of the simulated system (not to scale). With the

fiducial choices detailed in Section 4.2.2, the virial radius of the host is around

R
h
vir = 1600 kpc and that of the subhalo is around R

sh
vir = 160 kpc. The curved red

line corresponds to the trajectory of the subhalo though the host, rsh(t). At (A), the

thin galaxy disk is at the center of the subhalo at time T = 0Gy. At (B), at around

T = 1.7Gy (exact time values are slightly dependent on the chosen pericenter) the

system is at closest approach from the host center and, shortly after that, the galaxy

is maximally warped. At (C), typically 200My after the initial forward warp, the

distortion oscillates backwards. At much later times, (D), around T = 3Gy, the

subhalo is close to its second turnaround or “splashback radius” , and the disk is

thicker than it was at the start.
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matter subhalo in which it is contained, but the subhalo does not experience

any attraction towards the stars. While this approximation is used for most

of the simulations in this work, we do test its validity in Section 4.3.4.

3. The dark matter subhalo is spherical and is not distorted while crossing the

host. It is characterized by a static radial density profile, so we treat its

trajectory semi-analytically. The same applies to the host halo. This ap-

proximation implies that any possible disruption of either halos during the

merger or evaporation of the subhalo has a small e↵ect on the stellar disk; the

e↵ective drag force is dominant.

With these approximations, plus equation (4.2.8), the acceleration of the subhalo

center of mass and of a given star can be written as:

r̈sh = �G
Mh (< |rsh|)

|rsh|
3 rsh +

1

4

✓
�̃

mdm

◆
⇢hṙ

2
sh (4.2.9)

r̈i
? = �G

Mh (< |ri
?|)

|ri
?|

3 r? �Gm?

X

i 6=j

(ri
? � rj

?)��ri
? � rj

?

��3

�G
Msh (< |ri

? � rsh|)

|ri
? � rsh|

3

�
ri
? � rsh

�
, (4.2.10)

where ri
? is the 3D position of i-th star relative to the center of the host, Mh(sh)

is the mass of the host (subhalo) enclosed in a given radius and m? is the mass of

a single star.

This system of equations is similar to that employed by [55], to which we add

the mutual gravitational attraction between stars by introducing the summation
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Figure 4.2: Radial density profiles of the subhalo (black) and the host halo (red).

The host has a Hernquist profile defined by equation (4.2.11), with virial mass

Mh = 1015 M� and concentration c = 5. The subhalo is also a Hernquist profile

with virial mass Msh = 1012 M� and concentration c = 8.

term of equation (4.2.10). In particular, disregarding that self-gravity term, direct

numerical integration of equations (4.2.9) and (4.2.10) has been used by those au-

thors for an approximate description of the o↵set created between a colisionless

component and its subhalo’s center.

Our choices for the halo profiles are shown in Figure 4.2. For both the subhalo

and host, we use a Hernquist profile [41] given by

⇢(r) =
Mdm

2⇡

a

r(r + a)3
(4.2.11)

where a is the scale factor and Mdm is the total mass of the halo. Following [97], we

determine a for each halo by matching their inner densities to an NFW profile [70]

with concentration c and virial radius r200 using

a =
r200

c

p
2 [ln(1 + c)� c/(1 + c)]. (4.2.12)

In our fiducial analysis, the host has halo mass of 1015 M� and concentration c = 5,

while the subhalo has mass 1012 M� and c = 8.

The disk galaxy contained in the subhalo has an exponentially decaying radial
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profile and a squared hyperbolic secant vertical profile:

⇢disk(R, z) =
Mdisk

4⇡z0h2
0

exp

✓
�
R

h0

◆
sech2

✓
z

z0

◆
(4.2.13)

where h0 is the scale length of the disk, z0 its scale height and Mdisk its stellar

mass. We choose Mdisk = 3 ⇥ 1010 M�, h0 ⇡ 3.5 kpc and a ratio of scale height to

scale length of z0/h0 = 0.1 for the fiducial simulated galaxy disk. We also relate

the velocity dispersions of the galaxy in the radial and vertical directions such that

�z = 0.5�R, and set �� = �R for the azimuthal direction �̂. With these choices,

the resulting disk is roughly compatible with a Milky-Way type galaxy [11]. The

resulting galaxy is stable and its Toomre Q parameter is greater than 1 at all

relevant radii [100].

4.2.3 Numerical Simulation

To set up initial conditions for the phase space distribution of a galaxy disk, we use

the publicly available code GalIC2 [111]. GalIC iteratively minimizes a set of merit

functions which measure the discrepancy between the target and realized spatial

density field and velocity dispersions. It achieves this by using a Monte Carlo style

algorithm that forces the velocity distributions to have the correct second order

moments. We use N = 105 particles to populate the stellar disk, and set the

remaining parameters of GalIC to reproduce our fiducial scenario. The generated

fiducial disk is close enough to an equilibrium state that it maintains its profile for

2https://www.h-its.org/tap-software-en/galic-code/
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a su�ciently long time.

To evolve the motion of the subhalo-disk system in time, we need to e�ciently

solve equations (4.2.9) and (4.2.10). We use the publicly available code GIZMO3 [47]

in order to do so. GIZMO inherits some of its N-body algorithms from GADGET-

24 [96] and GADGET-3, and solves gravity with an e�cient tree method. It also

allows for the use of external analytic gravitational potentials and forces, and we

use that feature to reproduce the motion of the subhalo through the host. Both

halos are introduced as analytic potentials and are not populated with particles,

and the subhalo moves according to a prescribed trajectory while the host is fixed.

We first integrate equation (4.2.9) with the relevant set of initial conditions and a

choice of �̃/mdm (0.5 cm2g�1, 1.0 cm2g�1 or CDM), then feed to GIZMO a look-up

table with this subhalo trajectory rsh(t).

As depicted in Figure 4.1, the subhalo-plus-disk system starts its infall at the

virial radius of the host, roughly 1600 kpc away from its center. To simulate realistic

cases, we use subhalo orbits with several choices of pericenters, defined as the closest

approach distances from the center of the host. We set the pericenter by initially

giving the subhalo-disk system a tangential velocity whose magnitude is a fraction of

the circular velocity about the host. While we experimented with di↵erent values,

we focus on pericenter distances of 200 and 300 kpc for our analysis, since these

show appreciable SIDM e↵ects and are not dominated by tidal distortions due to

3http://www.tapir.caltech.edu/⇠phopkins/Site/GIZMO.html
4http://wwwmpa.mpa-garching.mpg.de/gadget/
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the host which could break our initial assumptions. The ratio of mean pericenter

to cluster virial radius (apocenter) is about 1:6 as shown in simulations by [37]. We

note that a more recent study by [105] has found a mean pericenter that is larger

by a factor of around two with respect to [37]. Our choices thus reflect a sizable

fraction of orbits of subhalos inside clusters.

We also expect the orientation of the galaxy disk at its closest passage to the

host to change the observable morphological distortions. This orientation is defined

as the angle between the center of mass velocity of the galaxy disk and the normal to

its plane. We study 4 di↵erent scenarios: orientation angles of 0, 22.5, 45 and 67.5

degrees (0 degrees is a face-on passing through the host and 90 degrees would be

a passing along the diameter of the disk, which is not interesting for our analysis).

Note that in all of these cases, the galaxy is still edge-on for the observer. In our

simulations, each disk is evolved separately, so no simultaneous interaction with

other galaxies is present.

4.2.4 An Analytical Prediction of the Results

Consider a single star of mass m? in a nearly circular orbit around the disk center.

To determine the disk warping, we are interested in the star’s motion in the direction

perpendicular to the galaxy plane, z(t). Under the approximation that the drag

force is constant across the entire subhalo, and considering that the warp is small

enough such that the disk potential is not severely disturbed, we can describe the

106



motion of a star in the reference frame of the subhalo as

z̈ =

✓
Fdrag

mdm

◆
�

Fsh sin ✓

m?
�

@�e↵(R, z)

@z
(4.2.14)

where the first term is given by equation (4.2.8) and comes from the change in

reference frames, and the e↵ective potential of the axisymmetric stellar disk is

�e↵(R, z) = �(R, z) + L
2
z/2R

2, where R is the radial distance from the star to

the center of the disk along its plane, and Lz its conserved angular momentum.

The term Fsh sin ✓ is the projection of the subhalo gravity onto the direction per-

pendicular to the plane of the galaxy, with ✓ being the angle between the galaxy

plane and the vector that goes from the galaxy center to the displaced star. One

could also add to equation (4.2.14) a term that corresponds to the tidal force caused

by the host, but that component is at least an order of magnitude weaker than the

gravity of the subhalo at the scale radius of the disk.

Recalling the approximation that a star does not wander too far from the plane

of the disk, we have sin ✓ ⇡ z/R. Using the spherical symmetry of the subhalo and

the epicycle approximation [12] to Taylor expand the potential up to second order

in z-derivatives, we can write

z̈ =
1

4

✓
�̃

mdm

◆
⇢hv

2
sh �

GMsh (R)

R2

⇣
z

R

⌘
�

@
2�

@z2
z, (4.2.15)

where the second derivative of the potential is evaluated at the equilibrium position

z = 0, on the plane of the galaxy. Describing the subhalo by a Hernquist profile,
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the cumulative mass within the radius R is given by [41]

Msh (R) = Mdm
R

2

(R + a)2
, (4.2.16)

where a is the scale radius of the halo, equivalent to that of equation (4.2.11). To

treat the potential, we use a fully analytic expression that approximates the 3D

potential of an axisymmetric disk with characteristic radius h0 and characteristic

height z0, given by [69]:

�(R, z) = �
GMdisk


R2 +

⇣
h0 +

p
z2 + z

2
0

⌘2
�1/2 . (4.2.17)

A final approximation is that most of the warp occurs in a relatively short time

span, becoming maximal near the pericenter of the subhalo trajectory by the host.

We verify with the simulations that this is especially true for the mild warps with

which we are concerned in this derivation. With that in mind, the drag force acts

as a “kick” on the star under consideration. Using equations (4.2.16) and (4.2.17)

on equation (4.2.15) and keeping the dominant orders in R, the motion of a point

on the disk is described by

z̈(t = timp) =


1

4

✓
�̃

mdm

◆
⇢hv

2
sh

�

t=timp

� !
2
z (4.2.18)

where timp is the time at which the subhalo is at pericenter, and where

!
2 =

GMdm

R (R + a)2
+

⇣
1 + h0

z0

⌘
R

2

[(h0 + z0)2 +R2]5/2
GMdisk. (4.2.19)

such that the system resembles a driven harmonic oscillator with characteristic

frequency !.
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Equation (4.2.18) suggests two things: that the gravitational pull of the sub-

halo and disk act together as a restoring force, opposing the warp, and that this

distortion is oscillatory. Especially at larger R, the squared frequency given by

equation (4.2.19) goes as R
�3, so the restoring force is smaller at large radii and

particles closer to the disk edge are less tightly bound gravitationally. The galaxy

disk thus gets warped due to di↵erential o↵sets along the disk, its longitudinal sec-

tion becoming “U-shaped”, and the warp shape may oscillate around the initially

thin configuration. Note that the edge-on disk initially bends forward towards the

direction of motion of the galaxy, as depicted on Figure 4.1. We indeed find the

warping e↵ect in the simulations described in the following sections, not only for

the mildly warped disks but also for the intense warps which perturb the galaxy

potential beyond our analytic approximations.

We can use equation (4.2.18) to obtain a theoretical estimate of the maximum

amplitude of the warp. Consider the fact that very shortly after the drag-induced

“kick”, the galaxy reaches its new, distorted equilibrium position, and that the kick

takes a finite, but small, amount of time. In that case, we can find the equilibrium

displacement z by setting z̈ = 0 on equation (4.2.18). The maximal displacement

obtained this way is:

zmax (R) =
⇢hv

2
sh

4!2

✓
�̃

mdm

◆
, (4.2.20)

with !
2 given by equation (4.2.19). Using physical parameters similar to our fidu-

cial system on equation (4.2.20) for the disk and subhalo dimensions and mass, we
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R = h0 R = 2h0 R = 3h0

200 kpc 0.48 1.05 2.39

300 kpc 0.19 0.42 0.95

Table 4.1: Analytic prediction of the magnitude of the displacement zmax as a

function of disk radius, in units of kpc, for the fiducial galaxy scenario when

�̃/mdm = 1.0 cm2g�1. These results match the simulations with reasonable ac-

curacy.

estimate the magnitude of the distortions in units of kpc on Table 1 for the pericen-

ters of interest. More explicitly, we use h0 = 3.5 kpc, z0 = 0.1h0, Mdm = 1012 M�,

Mdisk = 3 ⇥ 1010 M� and a = 30 kpc. We use the local dark matter density of the

host at pericenter, and the subhalo velocity is around 3200 km/s.

While equation (4.2.20) itself suggests a way of fitting the shape of the distor-

tion, we choose a slightly di↵erent method in Section 4.3.1, which accounts also for

asymmetric warps. An added e↵ect, not accounted for in the previous derivation, is

an “S-shaped” warp resembling an integral sign. The presence of an S-shaped warp

is a standard dynamical feature that arises quite generally from tidal interactions

with close neighbors [10, 77, 90].

Previous works have focused on the overall, center-of-mass o↵set between the

dark matter halos and their luminous components, but overlooked the di↵erential

o↵set from an extended body such as a disk galaxy. In particular, while an o↵set
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between the centroids of light and total matter in cluster mergers must reach tens of

kiloparsecs to be measurable, we find that displacements smaller than 1 kpc between

the subhalo and the stellar disk can lead to clear morphological distortions.

However, perturbations that bend galaxy disks tend to damp out quickly, in a

few rotation times [12], so the warps are not expected to be permanent features.

Our simulations show that, after the warping phase, the stellar disk also does not

revert back to a thin plane. Rather, in its final and relaxed state, su�ciently far

from the densest parts of the host such that the drag force is again negligible, the

stellar orbits spend significant time away from the galactic plane. We interpret this

final state as an enhancement of the thickness of the initially thin disk.

4.3 Results

4.3.1 Measuring the Warping of Disks

As expected from our analytical arguments, we indeed find that galaxy disks in

our simulations warp forwards, then oscillate and warp backwards, and then finally

relax in a pu�er state than at the beginning. To quantify the intensity of the

warps, we fit a 3rd order polynomial to the 2D projection of the edge-on stellar

disk: z(R) = aR
3 + bR

2 + cR + d, where z is the coordinate perpendicular to the

plane of the disk and R is the radial distance along the disk’s plane, from its center.

Such a polynomial is able to capture the initial and final state of the disks, when
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it should be well fit by a straight line, as well as the U and S warps, which will

force a fit to large b and a coe�cients, respectively. This choice of metric is simple

and convenient for our present purposes, but we note that others are available and

have been used in the literature (e.g. [106]). To fit the polynomial when there is

some orientation angle, we first rotate the galaxy so that it aligns with the vertical

axis. Since the warps oscillate and then vanish, the fitting coe�cients reproduce

this behavior by getting increased in magnitude and then eventually decreased back

to nullity. While the prediction from equation (4.2.20) assumed a symmetric warp

and employed the approximation of a constant disk potential, which breaks down

for strong warps, we do check that the predicted values in Table 1 are compatible

with the simulations.

We take the magnitude of coe�cient b as a simple proxy of the U-warp intensity.

To quantify some degree of theoretical uncertainty, we also obtain the error bars

for b from the covariance matrix of the polynomial fitting. For a distant galaxy,

one would hardly observe stars significantly further than a few scale radii from the

disk center, due to the rapidly decaying flux caused by the lower stellar density. To

avoid overestimating the observable warp intensity, we restrict the polynomial fit

only to particles that lie within a sphere of radius equal to 3h0 from the center of

the subhalo, where h0 is the scale radius of the galaxy disk.

For a better understanding of the distortions, Figures 4.3 and 4.4 show sim-

ulation snapshots of the evolution of the warps with time. With all stellar disks
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starting from the same initial conditions, we show in Figure 4.3 a snapshot of the

�̃/mdm = 0.5 cm2g�1 and �̃/mdm = 1.0 cm2g�1, 300 kpc�0 deg simulation, as well

as the CDM case. The galaxies in the SIDM halos exhibit prominent U-warps.

Notably, the stellar disk that inhabits the CDM subhalo displays a modest S-warp

at the same time frame. It is clear from the figure that the galaxy in the standard

CDM subhalo should not display a significant b coe�cient as given by the polyno-

mial fit. Notice that the �̃/mdm = 1.0 cm2g�1 panel on Figure 4.3 provides a check

for the analytical prediction of Table 1. There is overall good agreement between

the values in the 300 kpc row of that table and what is presented on Figure 4.3. For

R = 3h0 & 10 kpc, the predicted displacement of 0.95 kpc is in concordance with

the visual displacement of around 1 kpc in that Figure.

Once the subhalo’s gravity dominates over the drag again, the warp oscillates

backwards, as represented by Figure 4.4 by the snapshots at a time step around

200My after those of Figure 4.3. Similarly, the S-shaped warp on the galaxy be-

longing to the CDM subhalo changes orientation.

Finally, at a later stage, around 1Gy after the first warp and pericenter passage,

the bending modes have decayed, and the remaining e↵ect is an enhancement of

the thickness of the stellar disk. Such disk heating is also a feature of gravitational

interactions in a standard CDM scenario. Our simulations suggest, however, that

a population of disks under SIDM should be thicker than their CDM counterparts

due to the extra heating caused by the initial warping. For a quantitative analysis,
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Figure 4.3: Snapshots from the simulations with 300 kpc pericenter and orientation

angle 0�. Blue lines correspond to best-fit polynomials to the warp shape. From

left to right, we display the two SIDM cross-sections analyzed and the standard

CDM case. In all panels, the disk moves towards the left of the page, and the

host’s center is located towards the bottom of the page, as suggested by Figure 4.1.

The U-shaped warp is more severe on the case �̃/mdm = 1.0 cm2g�1, and still very

pronounced when �̃/mdm = 0.5 cm2g�1, while the standard CDM case displays an

S-shaped warp. The SIDM scenario is qualitatively very di↵erent than CDM.
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Figure 4.4: Same as Figure 4.3, around 200My later. Both warps change orientation

and the polynomial fit captures that change. As suggested again by Figure 4.1, the

host’s center is located towards the right of the page.
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we determine a metric for the disk thickness and apply it to simulation snapshots

on the following Section.

In Figure 4.5 we show snapshots of the simulations for both choices of pericenter

and all orientation angles at the maximal warping instant according to the polyno-

mial fit, for the case �̃/mdm = 1.0 cm2g�1. All panels show galaxies that inhabit

SIDM subhalos, and the disk initial conditions are the same. The units on each axis

correspond to the separation of the edge-on disks to the center of their respective

subhalos. The general trend is that the 0 degree orientation angle (face-on onto the

host) leads to more prominent, symmetric warps, while other inclination angles are

somewhat asymmetric around the center of the subhalo. Also, a shorter pericenter

leads to stronger distortions as it probes denser parts of the host halo.

Figure 4.5 also shows that, for inclinations that are not exactly face-on (orien-

tation angle di↵ering from zero), the stellar distribution can become significantly

skewed within the disk plane. This skewness is another potential signature of DM

self-interactions, in addition to the U-shaped warps and enhanced disk thickness.

Our simulations suggest that SIDM-induced skewness can persist within satellite

disks for times similar to the durations of the U-shaped warps. We defer a de-

tailed study of SIDM-induced skewness to future work, and instead will focus on

quantifying warp signatures and disk thickness.

In Figure 4.6 we show the evolution of the quadratic coe�cient of the polynomial

fit as a function of time for the 0� orientation angle in our 2 pericenters of interest.
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Figure 4.5: Snapshots of the maximum forward warp in 8 simulations with di↵erent

pericenters and orientation angles, for �̃/mdm = 1.0 cm2g�1. Black dots correspond

to individual stars on the disk that inhabits an SIDM subhalo. The same initial

conditions were used for the galaxies on each panel. The U-shaped warp is more

prominent for smaller pericenters (when the subhalo probes a higher ambient density

⇢h) and lower orientation angles (when the collision is closer to face-on as seen by

the host halo). We also note, but leave for a future study, the fact that there is a

skewness in the light distribution of disk galaxies at orientation angles larger than

0 degrees.
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Negative values of b correspond to a parabolic U-shape in the forward direction of

motion, while positive b values bend the disk backwards. In both panels, we see

oscillations of the coe�cient which eventually vanish as the disk aligns again with

the subhalo center. The error bands are multiplied by a factor of 10 on those plots

for better visualization.

We define the threshold for the detection of the warps to be |b| > 0.003, which is

roughly an order of magnitude larger than the values this same coe�cient reaches

in the baseline CDM case due to fluctuations. For a very symmetric warp with

z(R) ⇡ bR
2, this threshold value of b corresponds to a perpendicular displacement

of approximately 0.03 kpc and 0.3 kpc as measured around the disk’s scale radius

and three times the scale radius, respectively. After the first backwards warp (the

first positive bump of the quadratic coe�cient b on Figure 4.6), the galaxy disk is

significantly thicker than how is was initialized, looking “pu↵y” rather than warped.

Conservatively restricting ourselves to only one forwards plus one backwards warp,

we find from the curves on Figure 4.6 that the period during which the warp could

be detected on the least a↵ected 0-degrees orientation case (�̃/mdm = 0.5 cm2g�1,

300 kpc) is of around 0.1Gy, while the most a↵ected disk (�̃/mdm = 1.0 cm2g�1,

200 kpc) is detectably warped for at least 0.4Gy. The survival time of the U-

shaped warp ultimately translates into a potentially observable sample size, which

we further discuss in Section 4.4.

An important di↵erence then becomes clear: for SIDM cross-sections within the

118



Figure 4.6: Quadratic coe�cient b of the polynomial fit z(R) = aR
3+bR

2+cR+d as

a function of time for two pericenters. This is a simple metric chosen among di↵erent

possibilities (see text). On the right-hand axis, we show values for z(R) = bR
2 at

R = 2h0 (the displacement of the stellar disk at 2 scale radii). Note that the

quadratic coe�cient alone may not reproduce the exact warps apparent on Figures

4.3 and 4.4, where we fit the full polynomial. However, it captures the largest part of

the observable warp e↵ect. An estimate of the survival time of the warps is obtained

from these curves (see text). Colored bands are estimates of the measurement error,

obtained from the covariance of the fitted coe�cient b, and are multiplied by a

factor of 10 in the plot above for visualization. Vertical dashed lines mark the

time at which galaxies reach the pericenter. Upper panel: 200 kpc pericenter, 0�

orientation angle. Lower panel: 300 kpc pericenter, 0� orientation angle. In both

cases, the CDM curve does not exhibit any appreciable U-shaped warp as given by

this metric.
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range that we have explored (0.5 < �̃/mdm < 1.0 cm2g�1), U-shaped stellar disks

are expected to be quite general on galaxies that make a fast passing through a

dense dark matter environment, such as a galaxy cluster. In standard CDM, such

stellar disk warps should be rare when compared to their S-shaped counterparts.

We expect that further work to measure the intensity of warps and how frequently

they are found in observations can place tight constraints on �̃/mdm.

To complement Figures 4.5 and 4.6, we present Figure 4.7 comparing di↵erent

orientation angles for the case �̃/mdm = 0.5 cm2g�1 with 300 kpc pericenter. We

again show error bands which are multiplied by a factor of 10 for visualization. The

trend is similar to that shown on Figure 4.5, with steeper angles displaying a less

intense – but still detectable – warp signal when compared to the symmetric 0 deg

case.

4.3.2 Measuring the Enhanced Disk Thickness

Once the transient warps decay and the galaxy reaches a new equilibrium config-

uration, we find that the resulting stellar disks are thicker in the SIDM subhalos

when compared to their standard CDM counterparts. This happens because stars

in SIDM galaxies get scattered to outer orbits following the warped phase. To

quantify the thickness enhancement, we use simulation snapshots at around 3Gy,

when the disk is around its furthest distance from the host. We verify that the

thickness is fairly constant around that time frame. On the 2D projection of the
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Figure 4.7: Same as Figure 4.6, but for multiple orientation angles in the 300 kpc

pericenter case and cross-section �̃/mdm = 1.0 cm2g�1. Steeper angles are not only

more asymmetric (as seen from Figure 4.5), but also display a less intense warp.

Similarly to the 0 deg case plotted above, other orientation angles for CDM are also

null, as expected.
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Figure 4.8: Histograms of disk particles selected to lie within a box of 3 scale

radii and 5 scale heights from the galaxy center. Vertical bands correspond to the

measurement of disk thickness as given by the standard deviation of the histograms,

while dashed lines are scale height estimates from an exponential profile fit (see

text). The uncertainty in the standard deviation metric is given by the band width

and calculated from the mean �disk over 1Gy. Upper panel: 200 kpc pericenter, 0

degree inclination angle. The measured thickness is �disk(CDM) = 0.32±0.006 kpc,

�disk(0.5 cm2g�1) = 0.39±0.008 kpc and �disk(1.0 cm2g�1) = 0.46±0.010 kpc. The

exponential fit yields scale heights ⌧(CDM) = 0.34 kpc, ⌧(0.5 cm2g�1) = 0.49 kpc

and ⌧(1.0 cm2g�1) = 0.64 kpc. Lower panel: 300 kpc pericenter, also with 0 degree

inclination angle. The enhancement with respect to CDM is only significant for the

cross-section of 1.0 cm2g�1.
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disk as seen by the observer, we first select only the particles that lie inside a box of

radial range R = [�3h0, 3h0] and height range z = [�5z0, 5z0], where h0 ⇡ 3.5 kpc

is the initial scale length of the galaxy disk and z0 = 0.1h0 is the initial scale height.

In the cases with some nonzero orientation angle, we first rotate the galaxies by the

known angle to align them with the vertical axis, and then select particles. This

cut is supposed to represent only particles that could be detected as part of the

stellar disk in actual observations in the same way we select particles before fitting

the 3rd order polynomial.

We then make histograms of the height of these selected particles with respect

to the disk plane, which in the edge-on view of the observer is simply given by the

horizontal coordinate z. As a primary metric for the disk thickness, we use the

standard deviation of the resulting distribution of particles �disk ⌘

q
hz2i � hzi

2.

While the initial disk’s transverse profile is, by construction, very well fit by a

sech2 function according to equation (4.2.13) from which a scale height can be

obtained, we make this choice because the final, thicker disks are not well fit by

that expression. As the thickness di↵erences between CDM and SIDM play a more

significant role at around z & 3z0, we also fit an exponential profile proportional to

e
�z/⌧ as a secondary metric, where ⌧ is analogous to a new disk scale height. This

fit is restricted within the range [2z0, 4z0], where the profiles are well described by

a single exponential length scale ⌧ . For a comparison with a control disk, we also

measure both thickness metrics in a simulated system that does not go through
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the host halo, but rather evolves in isolation in a CDM subhalo. After 3Gy, the

vertical profile of this isolated disk remains consistent with the initial conditions

due to GalIC’s success in finding a quasi-equilibrium configuration. We find �isol.
disk =

0.24 kpc and ⌧
isol. = 0.20 kpc in this control system.

Figure 4.8 represents the obtained histograms at time 3Gy for di↵erent cross-

sections in the 200 kpc and 300 kpc pericenter cases, with orientation angle 0�.

The vertical bands on both panels show the values of the thickness metric, and

the uncertainty represented by their width corresponds to an averaging over ⇠

1Gy around the turnaround time. For the 200 kpc case we obtain �disk(CDM) =

0.32±0.006 kpc, �disk(�̃/mdm = 0.5 cm2g�1) = 0.39±0.008 kpc and �disk(�̃/mdm =

1.0 cm2g�1) = 0.46± 0.010 kpc. Notice that the CDM disk also gets thicker due to

tidal interactions alone, which is a potential systematic uncertainty. On both panels,

a larger cross-section leads to a thicker disk, but the discrepancy is more prominent

for smaller pericenters, which probe a higher number of SIDM interactions, a trend

similar to that of the U-shaped warps. Dashed lines correspond to the secondary

metric, the exponential fit, which capture mostly the di↵erence in the histogram

tails. For the 200 kpc case we obtain ⌧(CDM) = 0.34 kpc, ⌧(�̃/mdm = 0.5 cm2g�1) =

0.49 kpc and ⌧(�̃/mdm = 1.0 cm2g�1) = 0.64 kpc. Both pericenters show a slightly

stronger SIDM signal in the ⌧ metric than in �disk.

We note that including particles away from the limits |z| < 5z0 in the calculation

of �disk increases the enhancement e↵ect. That is mostly due to the fact that the
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disks in SIDM halos actually have a considerable number of particles spread out to

much further heights, while the CDM histogram decays very quickly and has little

contribution at z > 5z0, as can be seen from Figure 4.8. This implies that our

selection of particles is conservative for observational purposes.

The survival time for the enhanced thickness is considerably longer than that of

the U-warps. We find that during at least 1 Gy the histograms presented in Figure

4.8 remain very stable despite the orbital motion of particles. In fact, due to the

collisionless nature of stars, it is not expected that the stellar disk will completely

revert back to a thin plane, since that would require some energy to be radiated

away.

We thus conclude that this is another interesting di↵erence between morpholo-

gies in SIDM and CDM in cluster environments. While, in both scenarios, a disk

that has made a fast passage through a dense dark matter environment should

become thicker, the currently allowed SIDM cross-sections can lead to an enhance-

ment of that e↵ect. A consequence of this conclusion is that field galaxies which

have never been inside cluster environments should be relatively thinner, both in

CDM and SIDM, than those inside clusters.

A caveat is worth noting: one should expect the cluster environment to be more

disturbing to disks than our single-galaxy simulations can capture. This could lead

to a statistically increased thickness of edge-on disks even in the absence of SIDM,

for instance due to tidal interactions with many potential close neighbors other than
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the host itself.

4.3.3 Variations of the Cluster and Galaxy Properties

As expected from our theoretical estimates in Section 4.2.4, our results on the

previous sections are somewhat sensitive to the initial choice of the fiducial system

– the host and subhalo masses and their concentration, the initial galaxy thickness,

etc. We consider here variations of these physical parameters. In the next Section,

we also vary the “unphysical” parameters of the simulation, for instance the number

of particles and the gravitational softening scale. We also test, to some extent, the

initial simplifying approximations made explicit in Section 4.2.2. To accomplish

these tests, we simply run a new suite of simulations changing, whenever possible,

only one relevant parameter at a time.

The physical characteristics of the system, like halo profiles and galaxy length

scales, are ultimately a set of nuisance parameters that one would marginalize over,

in some sense, when trying to infer the SIDM cross-section �̃/mdm from actual

observations. That is due to the fact that the results shown in Sections 4.3.1 and

4.3.2 are expected to have a dependence on these parameters.

When we vary the host and subhalo profiles, the resulting warp strength follows

the trend expected from the analytical derivation in Section 4.2.4. Increasing the

concentration of the subhalo, at fixed mass, from the fiducial choice c = 8 to c = 12

yields a more cuspy halo which consequently produces a stronger restoring force on
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the distorted galaxy disk. The disk warp is expected to be less intense. Indeed,

the resulting warp curve for the 200 kpc, �̃/mdm = 1.0 cm2g�1 case then reaches

a minimum coe�cient b = �0.024 kpc�1, approximately 30% less intense than the

fiducial case (see Figure 4.6). The same trend is expected when the subhalo mass is

increased from the fiducial Msh = 1012 M� to 5⇥ 1012 M�, and we confirm that the

most intense warp coe�cient is 50% smaller than the fiducial scenario. Conversely,

for a less massive subhalo with Msh = 5 ⇥ 1011 M�, the maximum warp is 50%

larger than the fiducial case on Figure 4.6. In these tests, the galaxy and host halo

properties were kept the same as the fiducial choice.

We run another set of tests modifying the host profile parameters. We simulta-

neously change the initial infall distance of the disk galaxy to match the virial radius

of the new host. The other galaxy parameters remain fixed at their fiducial values

and again we look at the case 200 kpc, �̃/mdm = 1.0 cm2g�1 with 0 deg orientation

angle. Decreasing the host mass from 1015 M� to 5 ⇥ 1014 M�, at fixed concentra-

tion, reduces the maximum warp by around 60%, resulting in b = �0.014 kpc�1

at maximal warping. Also, further reducing it to 1014 M� significantly reduces the

maximum warp intensity to b = �0.001 (kpc)�1, below our defined detection limit

of |b| > 0.003 (kpc)�1. This again follows the trend described in Section 4.2.4:

reducing the mass at fixed concentration makes the host less dense at its center,

leading to a weaker SIDM drag force from equation (4.2.8), and consequently subtler

distortions.
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We also modify the disk’s structural parameters. Reducing the stellar mass

from 3⇥ 1010 M� to 1010 M� and changing the initial scale height from z0 = 0.1h0

to z0 = 0.05h0 and z0 = 0.2h0 did not produce changes larger than 10% on the warp

intensity.

In all of the tests above regarding the physical parameters of the system, we

also look at the e↵ect on the disk thickening. With respect to our fiducial case, all

variations caused only marginal changes on �disk below ±10%, to the final thickness

of the stellar disk in the �̃/mdm = 1.0 cm2g�1 SIDM subhalo (see Figure 4.8).

4.3.4 Tests of Numerical Approximations

We proceed to test the numerical, “unphysical” simulation parameters and our

initial approximations. The (constant) softening length used in our simulation runs

was of 50 pc, considerably shorter than the length scales of the e↵ects we have

studied. We performed several runs with softening as small as 25 pc and as large as

200 pc and found no significant di↵erence in the obtained results. We were focusing

specially on the evolution of the disk thickness when this parameter changed, since

spurious 2-body scatterings can lead to heating of the galaxy disk followed by an

increase in its thickness.

To make sure our results are not an artifact of integration accuracy, we also

experiment with GIZMO’s tree construction frequency and the maximum allowed

size of the time steps. We find no significant di↵erence in our measurements when
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the tree updating is made faster by an order of magnitude, and the same for when

the maximum time step allowed is made lower by one and two orders of magnitude.

We also increase and decrease the number of disk particles by a factor of 2 and find

subpercent di↵erences in the warp intensity of thickness measurements. We thus

conclude that our results are fully converged.

Finally, we test approximations (ii) and (iii) in Section 4.2.2 by implementing

simulations with both the subhalo and host described by dynamic, gravitating N-

body particles. We run these N-body simulations by modifying GADGET-2 [96]

to include self interacting dark matter with anisotroptic scattering cross-section [5].

The disk was again generated using GalIC. The simulations used 2⇥ 107 particles

for the host halo of mass 1015 M�, 2⇥104 for the subhalo with mass 1012 M� and 104

particles in the 3 ⇥ 1010 M� disk. In general, anisotropic self-interactions will give

rise to both evaporation of the subhalo as well as a drag. To isolate the e↵ect of drag

on the galaxy disk system we run a drag-only implementation where each simulation

particle is considered to be representative of an ensemble of microscopic particles

and the net drag force can be evaluated using equation (4.2.7). In this case we find

that strong warps are produced in the galaxy disk even when the outer regions of

the subhalo are largely distorted by tidal interactions. This is consistent with our

assumption that the warp is sensitive to the subhalo profile within the scales of

the disk radius, which does not change significantly due to tidal interactions. The

drag-only case by itself is not energy conserving. We run another set of simulations
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where we implement the full physical picture with drag and evaporation. We treat

interactions between simulation particles as if they represent actual microscopic

particles - i.e. we use the total cross section � to decide if two neighboring particles

interact or not, and then by choosing the scattering angle ✓ using the probability

distribution for ✓ from the form of d�/d⌦ [5]. Since these interactions change the

velocities of the interacting particles in both the direction parallel to the relative

velocity of the particles, as well as in the direction perpendicular to it, this method

naturally incorporates the e↵ects of both drag as well as subhalo evaporation arising

from self-interactions.

Since evaporation a↵ects the entire subhalo profile, we find that for the cross-

section used in this work (equation 4.2.2) the warping can be suppressed in our

fiducial 300 kpc pericenter case. Conversely, the disk thickening is enhanced due

to mass loss from the subhalo. However, when performing a full simulation for

the idealized scenario of a completely radial trajectory for the subhalo, we find

measurable disk warps, even though their magnitude is smaller than the drag-only

case. It must be noted that the amount of evaporation and drag can be a↵ected

di↵erently as both depend on the nature of d�/d⌦ [60]. These simulations are

currently in the process of development and it will be of interest to do a detailed

analysis on how di↵erent cross-sections a↵ect the warping of galaxy disks.
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4.4 Discussion

We have studied the impact of dark matter self-interactions on the morphology

of disk galaxies in galaxy cluster environments. The e↵ective drag force of SIDM

causes an o↵set between the dark matter subhalo and stars of the disk galaxy. The

restoring force from the dark matter then causes the stellar disk to be distorted.

We use modified N-body simulations to model anisotropic, velocity-independent

SIDM and focus on the morphology of disk galaxies as they pass through a large

galaxy cluster. In Figures 4.3-4.5 we show the distortions of an edge-on disk. Our

quantitative results focus on the symmetric, U-shaped warp and thickening of the

disk. For SIDM cross-sections of 0.5 to 1 cm2g�1, we find that a disk galaxy with

pericenter. 300 kpc gets significantly warped, and the warp oscillates on a timescale

of a few hundred million years (Figures 4.6 and 4.7) before decaying and leaving a

thickened disk (Figure 4.8). Thus we have identified the warping and thickening as

distinct signatures of SIDM; more generally asymmetries in the light distribution

arise once the disk is o↵set from the dark matter.

Several caveats apply to our simulation findings and to a detailed connection to

observations. We show tests with full simulations in which the dark matter halos

are populated with particles, and are therefore susceptible to evaporation, rather

than having their motion approximated by the drag force. Detailed studies with

such simulations are needed to obtain the full range of SIDM e↵ects and make

accurate observational predictions. In addition, our predictions are expected to
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apply robustly only to galaxies for which the dark matter dominates the gravity at

least towards the outer parts of the disk.

The prospects for observational detection of these SIDM signatures also hinge

on a robust understanding of disk galaxies in standard CDM, so that comparative

statements can be made. This generally requires inclusion of gas physics. Disk

galaxies are expected to be quenched, and therefore redder in color, and tidally

distorted near the cluster center – detailed predictions are challenging to obtain

as feedback processes and other gas physics remains uncertain. There are several

observational challenges as well. Perhaps the biggest observational uncertainty is

in the true 3-D distance of observed disk galaxies from the cluster center. Other

possible sources of uncertainty are the inclination angle with respect to the observer

(when the disk is not exactly edge-on), the location of the cluster center and the

dark matter density near it, and the gravitational influence of the galactic subhalo’s

dark matter over the stellar disk. The amount of time the disk galaxy has spent

inside the cluster is an additional factor, as it may not be on its first passage.

Given these caveats, one can take two approaches to connect robust SIDM pre-

dictions to observations. The first is to identify warped or otherwise distorted

galaxies and compare their properties to CDM and SIDM predictions. The fraction

of warped galaxies, the qualitative signature of the warp (S-shaped vs. U-shaped),

and other features di↵er in the two models. Even a small sample of warped disk

galaxies near cluster centers would be useful: the presence of U-shaped warps in
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such galaxies could support an SIDM explanation. This approach can already be

implemented with more detailed predictions, as imaging of nearby disk galaxies

with measured morphological properties has been obtained by the Sloan Digital

Sky Survey (SDSS)5 and other surveys. However, the lack of such warped disks

would be harder to interpret: if we only have projected positions, one must take

into account the fact that, even in standard CDM, disk galaxies may simply not

survive very close to the center, so disk galaxies observed near the cluster center

may have a large 3-D distance. The second approach is more statistical: analyze all

disk galaxies as a function of projected distance from the cluster and compare to

an ensemble of such galaxies in simulations. The presence of warps that last a few

hundred million years suggest that a non-negligible fraction of disks at small radii

would be observed to have U-warps in SIDM.

High resolution, multi-color images of galaxies in galaxy clusters would be the

appropriate sample for such tests. With ongoing and planned imaging surveys such

as the Dark Energy Survey (DES)6, Subaru-HSC7, the Kilo Degree Survey (KiDS)8,

the Wide Field InfraRed Survey Telescope (WFIRST)9 and Euclid10, large samples

of low-redshift clusters with well resolved galaxies will be available. In addition to

the warping, thickening and other observed e↵ects in simulations, one could also

5http://www.sdss.org/
6https://www.darkenergysurvey.org/
7http://hsc.mtk.nao.ac.jp/ssp/survey/
8http://kids.strw.leidenuniv.nl/
9https://wfirst.gsfc.nasa.gov/

10http://sci.esa.int/euclid/
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use velocity signatures from spatially resolved spectroscopy of face-on disks. We

find that in the oscillation phase, beyond the scale radius the disk moves with

an azimuthally symmetric velocity of 10’s of km/s. This could lead to Doppler

shifts between the edges and the center of the face-on disk. Yet another potentially

interesting e↵ect that we defer to future work is a skewness in the light profile of

galaxies, as suggested by Figure 4.5. In such a scenario, nearby elliptical galaxies

would also be interesting candidates to probe SIDM cross-sections.

A more detailed discussion of observational strategy is beyond the scope of this

work since we have only simulated a few simple cases of disk galaxy infall. We leave

for future work with detailed simulations the full prediction of galaxy morphologies

in SIDM, and a more comprehensive connection to observational prospects.
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[23] R. Davé, D. N. Spergel, P. J. Steinhardt, and B. D. Wandelt. Halo Prop-

erties in Cosmological Simulations of Self-interacting Cold Dark Matter. ,

547(2):574–589, Feb. 2001.

[24] S. Dodelson. Modern Cosmology. Academic Press, Amsterdam, 2003.

[25] S. Dodelson. Gravitational Lensing. 2017.

[26] S. Dodelson and M. D. Schneider. The e↵ect of covariance estimator error on

cosmological parameter constraints. Phys. Rev. D, 88:063537, Sep 2013.

[27] A. Drlica-Wagner, I. Sevilla-Noarbe, E. S. Ryko↵, R. A. Gruendl, B. Yanny,

D. L. Tucker, B. Hoyle, A. C. Rosell, G. M. Bernstein, K. Bechtol, M. R.
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Gjerløw, E., González-Nuevo, J., Górski, K. M., Gratton, S., Gregorio, A.,

Gruppuso, A., Gudmundsson, J. E., Hamann, J., Hansen, F. K., Hanson,

D., Harrison, D. L., Helou, G., Henrot-Versillé, S., Hernández-Monteagudo,
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